Journal Menu
Volume 1 Issue 2 (2019) Under Process, Pages [155] - [225]
COMPUTATIONAL ANALYSIS OF THE MECHANICAL STRENGTH AND DEBONDING PROCESS OF ADHESIVELY BONDED JOINTS
[1] J. Tomblin and C. Davies, Bonded Structures Industry Survey, In: 2004 FAA Workshop on Bonded Structures,
[2] X. F. Wu and R. A Jenson, Stress-function variational method for stress analysis of bonded joints under mechanical and thermal loads, International Journal of Engineering Science 49(3) (2011), 279-294.
DOI: https://doi.org/10.1016/j.ijengsci.2010.11.005
[3] X. F. Wu and Y. Zhao, Stress-function variational method for interfacial stress analysis of adhesively bonded joints, International Journal of Solids and Structures 50(25-26) (2013), 4305-4319.
DOI: https://doi.org/10.1016/j.ijsolstr.2013.09.002
[4] X. F. Wu and U. Chowdhury, Fracture toughness of adhesively bonded joints with large plastic deformations, Engineering Fracture Mechanics 190 (2018), 16-30.
DOI: https://doi.org/10.1016/j.engfracmech.2017.11.040
[5] M. L. Williams, Stress singularities resulting from various boundary conditions in angular corners of plates in extension, Journal of Applied Mechanics: Transactions of ASME 19(4) (1952), 526-528.
[6] V. L. Hein and F. Erdogan, Stress singularities in a two-material wedge, International Journal of Fracture Mechanics 7(3) (1971), 317-330.
DOI: https://doi.org/10.1007/BF00184307
[7] P. S. Theocaris, The order of singularity at a multi-wedge corner of a composite plate, International Journal of Engineering Science 12(2) (1974), 107-120.
DOI: https://doi.org/10.1016/0020-7225(74)90011-1
[8] M. L. Dunn, W. Suwito and
DOI: https://doi.org/10.1016/S0013-7944(97)00019-2
[9] O. Volkersen, Die Nietkraftverleitung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten, Luftfahrtforschung 15 (1938), 41-47.
[10] M. Goland and E. Reissner, The stresses in cemented joints, Journal of Applied Mechanics: Transactions of ASME 11 (1944), 17-27.
[11] F. Delale, F. Erdogan and M. N. Aydinoglu, Stress in adhesively bonded joints: A closed-form solution, Journal of Composite Materials 15(3) (1981), 249-271.
DOI: https://doi.org/10.1177/002199838101500305
[12] Y. H. Zhao, Stress-Function Variational Method for Stress Analysis of Adhesively Bonded Joints (Thesis), North Dakota State University, North Dakota, USA, 2014.
[13] D. Chen and
DOI: https://doi.org/10.1115/1.3166976
[14] F. Mortensen and O. T. Thomsen, Analysis of adhesive bonded joints: A unified approach, Composites Science and Technology 62(7-8) (2002), 1011-1131.
DOI: https://doi.org/10.1016/S0266-3538(02)00030-1
[15] J. Lee and H. Kim, Stress analysis of generally asymmetric single lap adhesively bonded joints, Journal of Adhesion 81(5) (2005), 443-472.
DOI: https://doi.org/10.1080/00218460590944918
[16] A. D. Diaz, R. Hadj-Ahmed, G. Foret and A. Ehrlacher, Stress analysis in a classical double lap, adhesively bonded joint with a layerwise model, International Journal of Adhesion and Adhesives 29(1) (2009), 67-76.
DOI: https://doi.org/10.1016/j.ijadhadh.2008.01.004
[17] S. C. Her, Stress analysis of adhesively-bonded lap joints, Composite Structures 47(1-4) (1999), 673-678.
DOI: https://doi.org/10.1016/S0263-8223(00)00052-0
[18] M. Y. Tsai, C. H. Hsu and C. N. Han, A note on Suhir’s solution of thermal stresses for a die-substrate assembly, Journal of Electronic Packaging 126(1) (2004), 115-119.
DOI: https://doi.org/10.1115/1.1648056
[19] J. J. Radice and J. R. Vinson, On the analysis of adhesively bonded structures: A high order semi-elastic adhesive layer model, Composites Science and Technology 68(2) (2008), 376-386.
DOI: https://doi.org/10.1016/j.compscitech.2007.06.024
[20] M. A. Khan, S. Kumar and J. N. Reddy, Material-tailored adhesively bonded multilayers: A theoretical analysis, International Journal of Mechanical Sciences 148 (2018), 246-262.
DOI: https://doi.org/10.1016/j.ijmecsci.2018.08.017
[21] R. Hadj-Ahmed, G. Foret and A. Ehrlacher, Stress analysis in adhesive joints with a multiparticle model of multilayered materials (M4), International Journal of Adhesion and Adhesives 21(4) (2001), 297-307.
DOI: https://doi.org/10.1016/S0143-7496(00)00034-8
[22] S. A. Yousefsani and M. Tahani, Accurate determination of stress distributions in adhesively bonded homogeneous and heterogeneous double-lap joints, European Journal of Mechanics: A/Solids 39 (2013), 197-208.
DOI: https://doi.org/10.1016/j.euromechsol.2012.12.001
[23] S. A. Yousefsani and M. Tahani, Analytical solutions for adhesively bonded composite single-lap joints under mechanical loadings using full layerwise theory, International Journal of Adhesion and Adhesives 43 (2013), 32-41.
DOI: https://doi.org/10.1016/j.ijadhadh.2013.01.012
[24] S. A. Yousefsani and M. Tahani, Edge effects in adhesively bonded composite joint integrated with piezoelectric patches, Composite Structures 200 (2018), 187-194.
DOI: https://doi.org/10.1016/j.compstruct.2018.05.071
[25] Chang Fo-van, Thermal contact stresses of bi-metal strip thermostat, Applied Mathematics and Mechanics 4(3) (1983), 363-376.
DOI: https://doi.org/10.1007/BF01875669
[26] Chang Fo-van, Analysis of adhesive lap joint, Applied Mathematics and Mechanics 7(10) (1986), 937-945.
DOI: https://doi.org/10.1007/BF01907595
[27] Chang Fo-van, Interlaminar stresses of laminated composite joints with double cover plates, International Journal of Solids and Structures 26(2) (1990), 165-174.
DOI: https://doi.org/10.1016/0020-7683(90)90049-2
[28] Chang Fo-van, Interlaminar Stresses of Composite Materials (in Chinese),
[29] F. Beer, E. R. Johnston, J. T. DeWolf and D. F. Mazurek, Mechanics of Materials (5th Edition),
[30] X. F. Wu and R. A. Jenson, Semianalytic stress-function variational approach for the interfacial stresses in bonded joints, Journal of Engineering Mechanics 140(11) (2014), 04014089.
DOI: https://doi.org/10.1061/(ASCE)EM.1943-7889.0000803
[31] R. A. Jenson, Stress-Function Varational Method and its Applications in the Strength Analysis of Bonded Joints and Hard Coatings (Thesis), North Dakota State University, North Dakota, USA, 2011.
[32] X. Wang, Stress-Function Varational Method for Stress Analysis of Adhesively Bonded Multilayer Composite Joints (Thesis),
[33] S. Timoshenko and J. N. Goodier, Theory of Elasticity,
[34] W. L. Yin, Free edge effects in anisotropic laminates under extension, bending and twisting, Part I: A stress-function-based variational approach, Journal of Applied Mechanics 61(2) (1994), 410-415.
DOI: https://doi.org/10.1115/1.2901459
[35] W. L. Yin, Free edge effects in anisotropic laminates under extension, bending and twisting, Part II: Eigenfunction analysis and the results for symmetric laminates, Journal of Applied Mechanics 61(2) (1994), 416-421.
DOI: https://doi.org/10.1115/1.2901460
[36] X. F. Wu, Fracture of Advanced Polymer Composites with Nanofiber Reinforced Interfaces (PhD Thesis),
[37] X. F. Wu, Fracture of Advanced Composites with Nanostructured Interfaces: Fabrication, Characterization and Modeling, VDM Verlag,
[38] J. Custódio, J. Broughton and H. Cruz, A review of factors influencing the durability of structural bonded timber joints, International Journal of Adhesion and Adhesives 29(2) (2009), 173-185.
DOI: https://doi.org/10.1016/j.ijadhadh.2008.03.002
[39] L. F. M. da Silva, P. J. C. das Neves, R. D. Adams and J. K. Spelt, Analytical models of adhesively bonded joints, Part I: Literature survey, International Journal of Adhesion and Adhesives 29(3) (2009), 319-330.
DOI: https://doi.org/10.1016/j.ijadhadh.2008.06.005
[40] L. F. M. da Silva, P. J. C. das Neves, R. D. Adams, A. Wang and J. K. Spelt, Analytical models of adhesively bonded joints, Part II: Comparative study, International Journal of Adhesion and Adhesives 29(3) (2009), 331-341.
DOI: https://doi.org/10.1016/j.ijadhadh.2008.06.007
[41] S. Budhe, M. D. Banea, S. de Barros and L. F. M. da Silva, An updated review of adhesively bonded joints in composite materials, International Journal of Adhesion and Adhesives 72 (2017), 30-42.
DOI: https://doi.org/10.1016/j.ijadhadh.2016.10.010
[42] E. H. Wong and J. Liu, Interface and interconnection stresses in electronic assemblies: A critical review of analytical solutions, Microelectronics Reliability 79 (2017), 206-220.
DOI: https://doi.org/10.1016/j.microrel.2017.03.010
[43] Z. G. Suo and J. W. Hutchinson, Interface crack between two elastic layers, International Journal of Fracture 43(1) (1990), 1-18.
DOI: https://doi.org/10.1007/BF00018123
[44] J. W. Hutchinson and Z. Suo, Mixed mode cracking in layered materials, Advances in Applied Mechanics 29 (1991), 63-191.
DOI: https://doi.org/10.1016/S0065-2156(08)70164-9
[45] H. H. Yu, M. Y. He and J. W. Hutchinson, Edge effects in thin film delamination, Acta Materialia 49(1) (2001), 93-107.
DOI: https://doi.org/10.1016/S1359-6454(00)00293-7
[46] H. H. Yu and J. W. Hutchinson, Delamination of thin film strips, Thin Solid Films 423(1) (2003), 54-63.
DOI: https://doi.org/10.1016/S0040-6090(02)00973-2
[47] X. F. Wu and Y. A. Dzenis, Closed-form solution for the size of plastic zone in an edge-cracked strip, International of Journal of Engineering Science 40(15) (2002), 1751-1759.
DOI: https://doi.org/10.1016/S0020-7225(02)00031-9
[48] X. F. Wu and Y. A. Dzenis, Closed-form solution for a mode-III interfacial edge crack between two bonded dissimilar elastic strips, Mechanics Research Communications 29(5) (2002), 407-412.
DOI: https://doi.org/10.1016/S0093-6413(02)00317-8
[49] X. F. Wu, Y. A. Dzenis and T. Y. Fan, Two semi-infinite interfacial cracks between two bonded dissimilar elastic strips, International Journal of Engineering Science 41(15) (2003), 1699-1710.
DOI: https://doi.org/10.1016/S0020-7225(03)00107-1
[50] X. F. Wu,
DOI: https://doi.org/10.1007/s00419-002-0240-y
[51] X. F. Wu, Y. A. Dzenis and W. S. Zou, Interfacial edge crack between two bonded dissimilar orthotropic strips under antiplane point loading, Zeischrift für Angewandte Mathematik und Mechanik 83(6) (2003), 419-422.
DOI: https://doi.org/10.1002/zamm.200310063
[52] G. I. Barenblatt, The formation of equilibrium cracks during brittle fracture: General ideas and hypotheses, axially symmetric cracks, Journal of Applied Mathematics and Mechanics 23(3) (1959), 622-636.
DOI: https://doi.org/10.1016/0021-8928(59)90157-1
[53] G. I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Advances in Applied Mechanics 7 (1962), 55-129.
DOI: https://doi.org/10.1016/S0065-2156(08)70121-2
[54] D. S. Dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids 8(2) (1960), 100-104.
DOI: https://doi.org/10.1016/0022-5096(60)90013-2
[55] K. Park and G. H. Paulino, Cohesive zone models: A critical review of traction-separation relationships across fracture surfaces, Applied Mechanics Reviews 64(6) (2011), 1-20; Article 060802.
DOI: https://doi.org/10.1115/1.4023110
[56] P. Feraren and H. M. Jensen, Cohesive zone modelling of interface fracture near flaws in adhesive joints, Engineering Fracture Mechanics 71(15) (2004), 2125-2142.
DOI: https://doi.org/10.1016/j.engfracmech.2003.12.003
[57] P. A. Gustafson and A. M. Waas, The influence of adhesive constitutive parameters in cohesive zone finite element models of adhesively bonded joints, International Journal of Solids and Structures 46(10) (2009), 2201-2215.
DOI: https://doi.org/10.1016/j.ijsolstr.2008.11.016
[58] M. F. S. F. de Moura and J. P. M. Goncalves, Cohesive zone model for high-cycle fatigue of adhesively bonded joints under model I loading, International Journal of Solids and Structures 51(5) (2014), 1123-1131.
DOI: https://doi.org/10.1016/j.ijsolstr.2013.12.009
[59] M. A. S. Carneiro and R. D. S. G. Campilho, Analysis of adhesively-bonded T-joints by experimentation and cohesive zone models, Journal of Adhesion Science and Technology 31(18) (2017), 1998-2014.
DOI: https://doi.org/10.1080/01694243.2017.1291320
[60] T. C. T. Ting and S. C. Chou, Edge singularities in anisotropic composites, International Journal of Solids and Structures 17(11) (1981), 1057-1068.
DOI: https://doi.org/10.1016/0020-7683(81)90013-5
[61] S. S. Wang and I. Choi, Boundary-layer effects in composite laminates, Part 1: Free-edge stress singularities, Journal of Applied Mechanics 49(3) (1982), 541-548.
DOI: https://doi.org/10.1115/1.3162514
[62] S. S. Wang and I. Choi, Boundary-layer effects in composite laminates, Part 2: Free-edge stress solutions and basic characteristics, Journal of Applied Mechanics 49(3) (1982), 549-560.
DOI: https://doi.org/10.1115/1.3162521
[63] R. I. Zwiers, T. C. T. Ting and R. L. Spilker, On the logarithmic singularity of free-edge stress in laminated composites under uniform extension, Journal of Applied Mechanics 49(3) (1982), 561-469.
DOI: https://doi.org/10.1115/1.3162526
[64] J. Dundurs, Elastic Interaction of Dislocations with Inhomogeneities, In: Mathematics Theory of Dislocations (pp. 70-115),
[65] R. B. Pipes and N. J. Pagano, Interlaminar stresses in composite laminates under uniform axial extension, Journal of Composite Materials 4(4) (1970), 538-548.
DOI: https://doi.org/10.1177/002199837000400409
[66] N. J. Pagano, On the calculation of interlaminar normal stress in composite laminate, Journal of Composite Materials 8(1) (1974), 65-81.
DOI: https://doi.org/10.1177/002199837400800106
[67] A. S. D. Wang and F. W. Crossman, Calculation of edge stresses in multi-layer laminates by sub-structuring, Journal of Composite Materials 12(1) (1978), 76-83.
DOI: https://doi.org/10.1177/002199837801200106
[68] C. Kassapoglou and P. A. Lagace, An efficient method for the calculation of interlaminar stresses in composite materials, Journal of Applied Mechanics 53(4) (1986), 744-750.
DOI: https://doi.org/10.1115/1.3171853
[69] L. Ye, Some characteristics of distributions of free-edge interlaminar stresses in composite laminates, International Journal of Solids and Structures 26(3) (1990), 331-351.
DOI: https://doi.org/10.1016/0020-7683(90)90044-V
[70] G. Flanagan, An efficient stress function approximation for the free-edge stresses in laminates, International Journal of Solids and Structures 31(7) (1994), 941-952.
DOI: https://doi.org/10.1016/0020-7683(94)90004-3
[71] C. Mittelstedt and W. Becker, Free-edge effects in composite laminates, Applied Mechanics Reviews 60(5) (2007), 217-245.
DOI: https://doi.org/10.1115/1.2777169
[72] X. F. Wu and Y. A. Dzenis, Experimental determination of probabilistic edge-delamination strength of a graphite-fiber/epoxy composite, Composite Structures 70(1) (2005), 100-108.
DOI: https://doi.org/10.1016/j.compstruct.2004.08.016
[73] X. F. Wu, Y. A. Dzenis and Emrah Gokdeg, Edge-cracked orthotropic bimaterial butt joint under antiplane singularity, International Journal of Nonlinear Science and Numerical Simulation 5(4) (2004), 347-354.
DOI: https://doi.org/10.1515/IJNSNS.2004.5.4.347
[74] X. F. Wu, R. A. Jenson and Y. Zhao, Stress-function variational approach to the interfacial stresses and progressive cracking in surface coatings, Mechanics of Materials 69(1) (2014), 195-203.
DOI: https://doi.org/10.1016/j.mechmat.2013.10.004
[75] B. Zhao, Z. H. Lu and Y. N. Lu, Closed-form solutions for elastic stress-strain analysis in unbalanced adhesive single-lap joints considering adherend deformations and bond thickness, International Journal of Adhesion and Adhesives 31(6) (2011), 434-445.
DOI: https://doi.org/10.1016/j.ijadhadh.2011.03.002
[76] ANSYS® Theory Reference (Version 16), Canonsburg, PA: ANSYS, Inc., 2016.
[77] U. Chowdhury, Theoretical and Computational Studies of the Strength and Fracture Toughness of Adhesively Bonded Joints and Polymer Nanoclay Composites (Thesis),