Journal Menu
Volume 17, Issue 1 (2025) Under Process, Pages [1] - [39]
NEW EXTENSIONS OF THE YOUNG INTEGRAL INEQUALITY AND ITS COUNTERPART
[1] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1934.
[2] E. F. Beckenbach and R. Bellman, Inequalities, Springer,
DOI: https://doi.org/10.1007/978-3-642-64971-4
[3] W. Walter, Differential and Integral Inequalities. Springer,
DOI: https://doi.org/10.1007/978-3-642-86405-6
[4] D. Bainov and P. Simeonov, Integral Inequalities and Applications. Mathematics and Its Applications, Vol. 57. Kluwer Academic,
DOI: https://doi.org/10.1007/978-94-015-8034-2
[5] Z. Cvetkovski, Inequalities, Theorems, Techniques and Selected Problems, Springer Link: Buücher, Springer
DOI: https://doi.org/10.1007/978-3-642-23792-8
[6] W. H. Young, On classes of summable functions and their Fourier series, Proc. Roy. Soc. London Ser. A 87(594) (1912), 225-229.
DOI: https://doi.org/10.1098/rspa.1912.0076
[7] D. R. Anderson, Young's integral inequality on time scales revisited, J. Inequal. Pure Appl. Math 8(3) (2007), Art. 64.
available online at http://www.emis.de/journals/JIPAM/article876.html
[8] R. P. Boas Jr. and M. B. Marcus, Generalizations of Young's inequality, J. Math. Anal. Appl. 46(1) (1974), 36-40.
DOI: https://doi.org/10.1016/0022-247X(74)90279-0
[9] R. P. Boas Jr. and M. B. Marcus, Inequalities involving a function and its inverse, Siam J. Math. Anal. 4(4) (1973), 585-591.
DOI: https://doi.org/10.1137/0504051
[10] P. Cerone, On Young's inequality and its reverse for bounding the Lorenz curve and Gini mean, J. of Math. Ineq. 3(3) (2009), 369-381.
DOI: https://dx.doi.org/10.7153/jmi-03-37
[11] C. Chesneau, On a generalization of the Young inequality involving intermediary functions and its applications, Mathematica Pannonica 30(2) (2024), 223-243.
DOI: https://doi.org/10.1556/314.2024.00020
[12] C. Chesneau. New results on composed variants of the Young integral inequality, Surveys in Mathematics and its Applications 20 (2025), 75-106.
[13] R. Cooper, Notes on certain inequalities: (1); Generalization of an inequality of W. H. Young, J. London Math. Soc. 2(1) (1927), 17-21.
DOI: https://doi.org/10.1112/jlms/s1-2.1.17
[14] R. Cooper, Notes on certain inequalities: II, J. London Math. Soc. 2(3) (1927), 159-163.
DOI: https://doi.org/10.1112/jlms/s1-2.3.159
[15] F. Cunningham Jr. and
DOI: https://doi.org/10.2307/2318018
[16] J. B. Diaz and F. T. Metcalf, An analytic proof of Young's inequality, Amer. Math. Monthly 77(6) (1970), 603-609.
DOI: https://doi.org/10.2307/2316736
[17] I. C. Hsu, On a converse of Young's inequality, Proc. Amer. Math. Soc. 33(1) (1972), 107-108.
DOI: https://doi.org/10.2307/2038179
[18] I. A. Lacković, A note on a converse of Young's inequality, Univ. Beograd. Publ. Elek trotehn. Fak. Ser. Mat. Fiz. No. 461/497(1974), 73-76.
[19] D. S. Mitrinović, Analytic Inequalities, In cooperation with P. M. Vasić, Die Grundlehren der mathematischen Wissenschaften, Band 165, Springer-Verlag, New York- Berlin, 1970.
[20] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
DOI: http://dx.doi.org/10.1007/978-94-017-1043-5
[21] F.-C. Mitroi and C. P. Niculescu, An extension of Young's inequality, Abstr. Appl. Anal. 2011, Art. ID 162049, 18 pages.
DOI: https://doi.org/10.1155/2011/162049
[22] A. Oppenheim, Note on Mr. Cooper's generalization of Young's inequality, J. London Math. Soc. 2(1) (1927), 21-23.
DOI: https://doi.org/10.1112/jlms/s1-2.1.21
[23] Z. Páles, A general version of Young's inequality, Arch. Math. (Basel) 58 (1992), 360-365.
DOI: https://doi.org/10.1007/BF01189925
[24] Z. Páles, A generalization of Young's inequality, in General Inequalities, 5 (Oberwolfach, 1986), 471-472, Internat. Schriftenreihe Numer. Math., 80, Birkhäuser, Basel, 1987.
[25] Z. Páles, On Young-type inequalities, Acta Sci. Math. (Szeged) 54(3-4) (1990), 327-338.
[26] F. D. Parker, Integrals of inverse functions, Amer. Math. Monthly 62(6) (1955), 439-440.
DOI: https://doi.org/10.2307/2307006
[27] D. Ruthing, On Young's inequality, Internat. J. Math. Ed. Sci. Techn. 25(2) (1994), 161-164.
DOI: https://doi.org/10.1080/0020739940250201
[28] W. T. Sulaiman, Notes on Youngs's Inequality, Int. Math. Forum 4(21-24) (2009), 1173-1180.
[29] A. Witkowski, On Young's inequality, J. Ineq. Pure and Appl. Math. 7(5) (2007), Art. 164.
[30] F.-H. Wong, C.-C. Yeh, S.-L. Yu, and C.-H. Hong, Young's inequality and related results on time scales, Appl. Math. Lett. 18(9) (2005), 983-988.
DOI: https://doi.org/10.1016/j.aml.2004.06.028
[31] L. Zhu, On Young's inequality, Internat. J. Math. Ed. Sci. Tech. 35(4) (2004), 601-603.