Journal Menu
Volume 17, Issue 1 (2025) Under Process, Pages [1] - [23]
RIGIDITY FOR THE BIFURCATION ON 4-DIMENSIONAL CANARDS
[1] R. Thom, Modèles Mathématique de la Morphogénèse, L’Enseignement Mathèmatiquet VIII (1962), 1-2.
[2] R. Thom, La Stabilité Topologique de Applications Polynomiales, L’Enseignement Mathèmatiquet VIII (1962), 1-2.
[3] R. Thom, Stabilité Structurelle et Morphogénèse,
[4] T. Poston and
[5] S. Kanagawa and K. Tchizawa, Structural stability in 4-dimensional canards, Advances in Pure Mathematics 12(11) (2022), 600-613.
DOI:
[6] K. Tchizawa and S. A. Campbell, On winding duck solutions in Proceedings of the Second International Conference on Neural, Parallel and Scientific Computations 2 (2002), 315-318.
[7] K. Tchizawa, Four-dimensional canards and their center manifold, Extended Abstracts Spring 2018, Trends in Mathematics 11, 193-199, Springer Nature Switzerland AG, 2019.
DOI:
[8] R. M. Anderson, A Non-standard representation for Brownian motion and Ito integration, Israel Journal of Mathematics 25 (1976), 15-46.
DOI:
[9] Jean-Marc Ginoux, Jaume Llibre and Kiyoyuki Tchizawa, Canards existence in the Hindmarsh-Rose model, Mathematical Modelling of Natural Phenomena 14(4) (2019), 1-21
DOI: https://doi.org/10.1051/mmnp/2019012
[10] S. Kanagawa and K. Tchizawa, 4-Dimensional canards with Brownian motion, Advanced Topics of Topology, Edited by Francisco Bulnes, IntechOpen (2022), 1-11.
DOI:
[11] S. Kanagawa and K. Tchizawa, Canards flying on bifurcation, Advances in Pure Mathematics 13(6) (2023), 412-424.
DOI:
[12] H. Miki, H. Nishino and K. Tchizawa, On the possible occurrence of duck solutions in domestic and two-region business cycle models, Nonlinear Studies 19 (2012), 39-55.
[13] J. Hildeberto, K. Christian and S. Maximilian, The hyperbolic umbilic singularity in fast-slow systems, Nonlinearity 37(9) (2024); Paper No. 095036.