Journal Menu
Volume 16, Issue 1 (2024), Pages [1] - [134]
VARIATIONAL ITERATION TECHNIQUE BASED ON FOURTH KIND CHEBYSHEV POLYNOMIALS FOR SOLVING BOUNDARY VALUE PROBLEMS OF TENTH-ORDER
[1] A. M. Abdulla and A. Mohammad, Solution of seventh order value boundary value problems by using variational iteration method, International Journal of Mathematics and Computational Science 5(1) (2019), 6-12.
[2] A. Ali, K. A. Esra, B. Dumitru and I. Mustafa, New numerical method for solving tenth order boundary value problems, Mathematics 6(11) (2018), 2-9; Article 245.
DOI: https://doi.org/10.3390/math6110245
[3] A. Ghazala and S. Maasoomah, Application of homotopy analysis method to the solution of ninth order boundary value problems in AFTI-F16 fighters, Journal of the Association of Arab Universities for Basic and Applied Sciences 24 (2017), 149-155.
DOI: https://doi.org/10.1016/j.jaubas.2016.08.002
[4] M. J. Iqbal, S. Rehman, A. Pervaiz and A. Hakeem, Approximations for linear tenth-order boundary value problems through polynomial and non-polynomial cubic spline techniques, Proceedings of the Pakistan Academy of Sciences 52(4) (2015), 389-396.
[5] S. U. Islam, S. Haq and J. Ali, Numerical solution of special 12th-order boundary value problems using differential transform method, Communications in Nonlinear Science and Numerical Simulation 14(4) (2009), 1132-1138.
DOI: https://doi.org/10.1016/j.cnsns.2008.02.012
[6] K. N. S. Kasi Viswanadham and B. Sreenivasulu, Numerical solution of tenth order boundary value problems by Galerkin method with septic B-splines, International Journal of Applied Science and Engineering 13(3) (2015), 247-260.
[7] K. N. S. Kasi Viswanadham and S. M. Reddy, Numerical solution of ninth order boundary value problems by Petrov-Galerkin method with quintic B-splines as basis functions and septic B-splines as weight functions, Procedia Engineering 127 (2015), 1227-1234.
DOI: https://doi.org/10.1016/j.proeng.2015.11.470
[8] E. J. Mamadu and I. N. Njoseh, Tau-collocation approximation approach for solving first and second order ordinary differential equations, Journal of Applied Mathematics and Physics 4(2) (2016), 383-390.
DOI: https://doi.org/10.4236/jamp.2016.42045
[9] S. T. Mohyud-Din and A. Yildirim, Solutions of tenth and ninth-order boundary value problems by modified variational iteration method, Applications and Applied Mathematics 5(1) (2010), 11-25.
[10] I. N. Njoseh and E. J. Mamadu, Numerical solutions of a generalized n-th order boundary value problems using power series approximation method, Applied Mathematics 7(11) (2016), 1215-1224.
DOI: https://doi.org/10.4236/am.2016.711107
[11] M. A. Noor and S. T. Mohyud-Din, A new approach for solving fifth-order boundary value problem, International Journal of Nonlinear Science 9 (2010), 387-393.
[12] M. A. Noor and S. T. Mohyud-Din, Variational iteration method for fifth-order boundary value problem using He’s polynomials, Mathematical Problems in Engineering (2010), 1-12.
[13] M. A. Noor and S. T. Mohyud-Din, Variational iteration decomposition method for solving eighth-order boundary value problems, International Journal of Differential Equations (2007), 1-16.
DOI: https://doi.org/10.1155/2007/19529
[14] P. K. Pandey, Solving third-order boundary value problems with quartic splines, Springer-Plus 5(1) (2016), 1-10.
DOI: https://doi.org/10.1186/s40064-016-1969-z
[15] S. M. Reddy, Numerical solution of ninth order boundary value problems by quintic B-splines, International Journal of Engineering 5(7) (2016), 38-47.
[16] S. S. Shahid and M. Iftikhar, Variational iteration method for the solution of seventh order boundary value problems using He’s polynomials, Journal of the Association of Arab Universities for Basic and Applied Sciences 18 (2015), 60-65.