Journal Menu
Volume 15, Issue 1 (2023), Pages [1] - [87]
PARAMETRIC EXTENSIONS OF SOME REFERENCED TWO-DIMENSIONAL STRICT ARCHIMEDEAN COPULAS
[1] F. Aldhufairi and J. Sepanski, New families of bivariate copulas via unit Weibull distortion, Journal of Statistical Distributions and Applications 7(A8) (2020), 1-20.
DOI: https://doi.org/10.1186/s40488-020-00110-z
[2] M. I. Bhatti and H. Q. Do, Recent development in copula and its applications to the energy, forestry and environmental sciences, International Journal of Hydrogen Energy 44(36) (2019), 19453-19473.
DOI: https://doi.org/10.1016/j.ijhydene.2019.06.015
[3] H. Bekrizadeh and B. Jamshidi, A new class of bivariate copulas: Dependence measures and properties, Metron 75 (2017), 31-50.
DOI: https://doi.org/10.1007/s40300-017-0107-1
[4] J. F. Carriere, Bivariate survival models for coupled lives, Scandinavian Actuarial Journal 2000(1) (2000), 17-32.
DOI: https://doi.org/10.1080/034612300750066700
[5] C. Chesneau, On new three- and two-dimensional ratio-power copulas, Computational Journal of Mathematical and Statistical Sciences 2(1) (2023), 106-122.
DOI: https://doi.org/10.21608/CJMSS.2023.195134.1005
[6] C. Chesneau, A collection of new trigonometric- and hyperbolic-FGM-type copulas, AppliedMath 3(1) (2023), 147-174.
DOI: https://doi.org/10.3390/appliedmath3010010
[7] C. Chesneau, Extensions of two bivariate strict Archimedean copulas, Computational Journal of Mathematical and Statistical Sciences 2(2) (2023), 159-180.
DOI: https://doi.org/10.21608/CJMSS.2023.205330.1007
[8] C. Chesneau, Theoretical advancements on a few new dependence models based on copulas with an original ratio form, Modelling 4(2) (2023), 102-132.
DOI: https://doi.org/10.3390/modelling4020008
[9] K. Cooray, Strictly Archimedean copulas with complete association for multivariate dependence based on the Clayton family, Dependence Modeling 6(1) (2018), 1-18.
DOI: https://doi.org/10.1515/demo-2018-0001
[10] W. Diaz and C. M. Cuadras, An extension of the Gumbel-Barnett family of copulas, Metrika 85(7) (2022), 913-926.
DOI: https://doi.org/10.1007/s00184-022-00859-0
[11] F. El Ktaibi, R. Bentoumi, N. Sottocornola and M. Mesfioui, Bivariate copulas based on counter-monotonic shock method, Risks 10(11) (2022); Article 202.
DOI: https://doi.org/10.3390/risks10110202
[12] P. Gaillardetz and X. S. Lin, Valuation of equity-linked insurance and annuity products with binomial models, North American Actuarial Journal 10(4) (2006), 117-144.
DOI: https://doi.org/10.1080/10920277.2006.10597417
[13] C. Gourieroux and Y. Lu, Love and death: A freund model with frailty, Insurance: Mathematics and Economics 63 (2015), 191-203.
DOI: https://doi.org/10.1016/j.insmatheco.2015.03.016
[14] F. H. Hodel and J. R. Fieberg, Circular-linear copulae for animal movement data, Methods in Ecology and Evolution 13(5) (2022), 1001-1013, bioRxiv.
DOI: https://doi.org/10.1101/2021.07.14.452404
[15] F. H. Hodel and J. R. Fieberg, Cylcop: An R Package for Circular-Linear Copulae with Angular Symmetry (2021), bioRxiv.
DOI: https://doi.org/10.1101/2021.07.14.452253
[16] N. Kolev, U. dos Anjos and B. V. de M. Mendes, Copulas: A review and recent developments, Stochastic Models 22(4) (2006), 617-660.
DOI: https://doi.org/10.1080/15326340600878206
[17] T. Kularatne, J. Li and D. Pitt, On the use of Archimedean copulas for insurance modelling, Annals of Actuarial Science 15(1) (2021), 57-81.
DOI: https://doi.org/10.1017/S1748499520000147
[18] M. Manstavičius and G. Bagdonas, A class of bivariate independence copula transformations, Fuzzy Sets and Systems 428 (2022), 58-79.
DOI: https://doi.org/10.1016/j.fss.2020.12.022
[19] S. Mondal and D. Kundu, A bivariate inverse Weibull distribution and its application in complementary risks model, Journal of Applied Statistics 47(6) (2020), 1084-1108.
DOI: https://doi.org/10.1080/02664763.2019.1669542
[20] S. Nadarajah, E. Afuecheta and
DOI: https://doi.org/10.6092/issn.1973-2201/7202
[21] R. B. Nelsen, Dependence Modeling with Archimedean Copulas, Proceeding of the Second Brazilian Conference on Statistical Modelling in Insurance and Finance, Institute of Mathematics and Statistics, University of Sao Paulo, 2005.
[22] R. B. Nelsen, An Introduction to Copulas, Springer Science+Business Media, Inc., Second Edition, 2006.
DOI: https://doi.org/10.1007/0-387-28678-0
[23] A. J. Patton, A review of copula models for economic time series, Journal of Multivariate Analysis 110 (2012), 4-18.
DOI: https://doi.org/10.1016/j.jmva.2012.02.021
[24] A. Pirmoradian, A new one parameter family of Archimedean copula and its extensions, PhD thesis, Institute of Mathematical Sciences - Universiti Malaya, 2013.
[25] R Core Team, R: A Language and Environment for Statistical Computing,
Available at: https://www.R-project.org/
[26] D. J. Roberts and T. Zewotir, Copula geoadditive modelling of anaemia and malaria in young children in Kenya, Malawi, Tanzania and Uganda, Journal of Health, Population and Nutrition 39 (2020); Article 8.
DOI: https://doi.org/10.1186/s41043-020-00217-8
[27] M. M. Seyam and S. M. Elsobky, New bivariate MS copula via Rüschendorf method, Information Sciences Letters 11(4) (2022), 1087-1092.
[28] A. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publications de l’Institut Statistique de l’Université de Paris 8 (1959), 229-231.
[29] S. O. Susam, A new family of Archimedean copula via trigonometric generator function, Gazi University Journal of Science 33(3) (2020), 806-813.
DOI: https://doi.org/10.35378/gujs.635032
[30] N. Taketomi, K. Yamamoto, C. Chesneau and T. Emura, Parametric distributions for survival and reliability analyses: A review and historical sketch, Mathematics 10(20) (2022); Article 3907.
DOI: https://doi.org/10.3390/math10203907
[31] Q. Yang, M. Xu, X. Lei, X. Zhou and X. Lu, A methodological study on AMH copula-based joint exceedance probabilities and applications for assessing tropical cyclone impacts and disaster risks (Part I), Tropical Cyclone Research and Review 3(1) (2014), 53-62.
DOI: https://doi.org/10.6057/2014TCRR01.05
[32] X. Zhao and X. Zhou, Copula models for insurance claim numbers with excess zeros and time-dependence, Insurance: Mathematics and Economics 50(1) (2012), 191-199.