Journal Menu
Volume 15, Issue 1 (2023), Pages [1] - [87]
A MATHEMATICAL MODEL OF CHOLERA OUTBREAK WITH MULTIPLE TIME DELAYS
[1] Falaye Adeyinka Adesuyi, E. E. E. Akarawak, A. T. Cole, Evans O. Patience, Oluyori David Adeyemi, Falaye Roseline Adunola and Adama Ndako Victor, A mathematical model for capturing cholera spread and containment options, International Journal of Mathematical Sciences and Computing 4(1) (2018), 15-40.
DOI: https://doi.org/10.5815/ijmsc.2018.01.02
[2] Manju Agarwal and Vinay Verma, Modeling and analysis of the spread of an infectious disease cholera with environmental fluctuations, Applications and Applied Mathematics: An International Journal 7(1) (2012); Article 27.
[3] Mo’tassem Al-Arydah, Abubakar Mwasa, Jean M. Tchuenche and Robert J. Smith, Modeling cholera disease with education and chlorination, Journal of Biological Systems 21(4) (2013); Article 1340007.
DOI: https://doi.org/10.1142/S021833901340007X
[4] Alen Alexanderian, Matthias K. Gobbert, K. Renee Fister, Holly Gaff, Suzanne Lenhart and Elsa Schaefer, An age-structured model for the spread of epidemic cholera: Analysis and simulation, Nonlinear Analysis: Real World Applications 12(6) (2011), 3483-3498.
DOI: https://doi.org/10.1016/j.nonrwa.2011.06.009
[5] Mohammad Aslefallah, Şuayip Yüzbaşi and Saeid Abbasbandy, A numerical investigation based on exponential collocation method for nonlinear SITR model of COVID-19, Computer Modeling in Engineering & Sciences 136(2) (2023), 1687-1706.
DOI: https://doi.org/10.32604/cmes.2023.025647
[6] Attaullah, Rashid Jan and Şuayip Yüzbaşi, Dynamical behaviour of HIV infection with the influence of variable source term through Galerkin method, Chaos, Solitons & Fractals 152 (2021); Article 111429.
DOI: https://doi.org/10.1016/j.chaos.2021.111429
[7] A. A. Ayoade, M. O. Ibrahim, O. J. Peter and F. A. Oguntolu, A mathematical model on cholera dynamics with prevention and control, Covenant Journal of Physical and Life Sciences 6(1) (2018), 46-54.
[8] S Balamuralitharan and M Radha, Stability analysis of cholera-carrier dependent infectious disease, International Journal of Pure and Applied Mathematics 113(11) (2017), 234-242.
[9] Yibeltal Negussie Bayleyegn, Mathematical Analysis of a Model of Cholera Transmission Dynamics, African Institute for Mathematical Sciences (AIMS),
[10] Musundi O. Beryl, Lawi O. George and Nyamwala O. Fredrick, Mathematical analysis of a cholera transmission model incorporating media coverage, International Journal of Pure and Applied Mathematics 111(2) (2016), 219-231.
DOI: https://doi.org/10.12732/ijpam.v111i2.8
[11] V. Capasso and S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Revue d’Épidémiologie et de Santé Publique 27(2) (1979), 121-132.
[12] Richard Carr and Martin Strauss, Excreta-related infections and the role of sanitation in the control of transmission, Water Quality: Guidelines, Standards and Health (2001), 89-113.
[13] Dennis L. Chao, Ira M. Longini and J. Glenn Morris, Modeling Cholera Outbreaks, In Cholera Outbreaks, Pages 195-209, Springer, 2013.
DOI: https://doi.org/10.1007/82_2013_307
[14] Amar Nath Chatterjee and Bashir Ahmad, A fractional-order differential equation model of COVID-19 infection of epithelial cells, Chaos, Solitons & Fractals 147 (2021); Article 110952.
DOI: https://doi.org/10.1016/j.chaos.2021.110952
[15] Cláudia Torres Codeço, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infectious Diseases 1(1) (2001); Article 1.
DOI: https://doi.org/10.1186/1471-2334-1-1
[16] C. Nicholas Cuneo, Richard Sollom and Chris Beyrer, The cholera epidemic in
[17] Edmund X. DeJesus and Charles Kaufman, Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations, Physical Review A 35(12) (1987); Article 5288.
DOI: https://doi.org/10.1103/PhysRevA.35.5288
[18] Stephen Edward and Nkuba Nyerere, A mathematical model for the dynamics of cholera with control measures, Applied and Computational Mathematics 4(2) (2015), 53-63.
DOI: https://doi.org/10.11648/j.acm.20150402.14
[19] Subchan, Irma Fitria and Ahmad M. Syafi’i, An Epidemic Cholera Model with Control Treatment and Intervention, In Journal of Physics: Conference Series, Volume 1218, Page 012046. IOP Publishing, 2019.
DOI: https://doi.org/10.1088/1742-6596/1218/1/012046
[20] Jonathan Erwin Forde, Delay Differential Equation Models in Mathematical Biology,
[21] Isaac Chun-Hai Fung, Cholera transmission dynamic models for public health practitioners, Emerging Themes in Epidemiology 11(1) (2014); Article 1.
DOI: https://doi.org/10.1186/1742-7622-11-1
[22] Ahmet Gökdoğan, Mehmet Merdan and Ahmet Yildirim, A multistage differential transformation method for approximate solution of Hantavirus infection model, Communications in Nonlinear Science and Numerical Simulation 17(1) (2012), 1-8.
DOI: https://doi.org/10.1016/j.cnsns.2011.05.023
[23] David M. Hartley, J. Glenn Morris Jr. and David L. Smith, Hyperinfectivity: A critical element in the ability of V. Cholerae to cause epidemics?, PLoS Medicine 3(1) (2006), e7.
DOI: https://doi.org/10.1371/journal.pmed.0030007
[24] Daihai He, Xueying Wang, Daozhou Gao and Jin Wang, Modeling the 2016–2017 Yemen cholera outbreak with the impact of limited medical resources, Journal of Theoretical Biology 451 (2018), 80-85.
DOI: https://doi.org/10.1016/j.jtbi.2018.04.041
[25] Xiaowu Jiang, Xueyong Zhou, Xiangyun Shi and Xinyu Song, Analysis of stability and Hopf bifurcation for a delay-differential equation model of HIV infection of CD4+ T-cells, Chaos, Solitons & Fractals 38(2) (2008), 447-460.
DOI: https://doi.org/10.1016/j.chaos.2006.11.026
[26] Yang Kuang, Delay Differential Equations: with Applications in Population Dynamics, Academic Press, 1993.
[27] Pushpendra Kumar and Vedat Suat Erturk, Dynamics of cholera disease by using two recent fractional numerical methods, Mathematical Modelling and Numerical Simulation with Applications 1(2) (2021), 102-111.
DOI: https://doi.org/10.53391/mmnsa.2021.01.010
[28] Ana P. Lemos-Paião, Helmut Maurer, Cristiana J. Silva and Delfim F. M. Torres, A SIQRB delayed model for cholera and optimal control treatment, Mathematical Modelling of Natural Phenomena 17 (2022); Article 25.
DOI: https://doi.org/10.1051/mmnp/2022027
[29] Ana P. Lemos-Paião, Cristiana J. Silva and Delfim F. M. Torres, An epidemic model for cholera with optimal control treatment, Journal of Computational and Applied Mathematics 318 (2017), 168-180.
DOI: https://doi.org/10.1016/j.cam.2016.11.002
[30] Ana P. Lemos-Paião, Cristiana J. Silva and Delfim F. M. Torres, A cholera mathematical model with vaccination and the biggest outbreak of world’s history, AIMS Mathematics 3(4) (2018), 448-463.
DOI: https://doi.org/10.3934/Math.2018.4.448
[31] Myron M. Levine, James B. Kaper, Deirdre Herrington, Genevieve Losonsky, J. Glenn Morris, M. L. Clements, Robert E. Black, B. Tall and Robert Hall, Volunteer studies of deletion mutants of Vibrio Cholerae o1 prepared by recombinant techniques, Infection and Immunity 56(1) (1988), 161-167.
DOI: https://doi.org/10.1128/iai.56.1.161-167.1988
[32] Shu Liao and Fang Fang, Stability analysis and optimal control of a cholera model with time delay, Journal of Computational Analysis & Applications 22(6) (2017), 1055-1073.
[33] Shu Liao and Weiming Yang, Cholera model incorporating media coverage with multiple delays, Mathematical Methods in the Applied Sciences 42(2) (2019), 419-439.
DOI: https://doi.org/10.1002/mma.5175
[34] A. K. Misra, S. N. Mishra, A. L. Pathak, Peeyush Misra and Ram Naresh, Modeling the effect of time delay in controlling the carrier dependent infectious disease – cholera. Applied Mathematics and Computation 218(23) (2012), 11547-11557.
DOI: https://doi.org/10.1016/j.amc.2012.04.085
[35] A. K. Misra, S. N. Mishra, A. L. Pathak, P. K. Srivastava and Peeyush Chandra, A mathematical model for the control of carrier-dependent infectious diseases with direct transmission and time delay, Chaos, Solitons & Fractals 57 (2013), 41-53.
DOI: https://doi.org/10.1016/j.chaos.2013.08.002
[36] A. K. Misra and Vishal Singh, A delay mathematical model for the spread and control of water borne diseases, Journal of Theoretical Biology 301 (2012), 49-56.
DOI: https://doi.org/10.1016/j.jtbi.2012.02.006
[37] Ahmed A. Muhseen and Xueyong Zhou, On the dynamical behaviors of a cholera model with Holling type II functional response, Al-Nahrain Journal of Science 19(1) (2016), 156-167.
DOI: https://doi.org/10.22401/JNUS.19.1.18
[38] Zindoga Mukandavire, Shu Liao, Jin Wang, Holly Gaff, David L. Smith and J. Glenn Morris, Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe, Proceedings of the National Academy of Sciences 108(21) (2011), 8767-8772.
DOI: https://doi.org/10.1073/pnas.1019712108
[39] Rachael L. Miller Neilan, Elsa Schaefer, Holly Gaff, K. Renee Fister and Suzanne Lenhart, Modeling optimal intervention strategies for cholera, Bulletin of Mathematical Biology 72(8) (2010), 2004-2018.
DOI: https://doi.org/10.1007/s11538-010-9521-8
[40] O. M. Ogunmiloro and O. Ojo, Transmission dynamic response of cholera epidemic model to indirect and direct infectious contact: Stability and homotopy analysis method, Journal of Computer Science and Computational Mathematics 10(1) (2020), 13-18.
DOI: https://doi.org/10.20967/jcscm.2020.01.003
[41] Jeffrey M. Ochoche, A mathematical model for the transmission dynamics of cholera with control strategy, International Journal of Science and Technology 2(11) (2013), 797-803.
[42] O. M. Ogunmiloro and T. O. Ogunlade, Transmission dynamics of cholera epidemic model with latent and hygiene compliant class, Electronic Journal of Mathematical Analysis and Applications 7(2) (2019), 138-150.
[43] Geert Jan Olsder and J. W. Van der Woude, Mathematical Systems Theory, Volume 4, VSSD Delft, 2005.
[44] Musundi Beryl Onyuma, Modelling Cholera Transmission Incorporating Media Coverage, PhD Thesis,
[45] Kennedy Jackob Owade, Modelling the Role of Rehydration and Antibiotic Treatment on Reduction of Cholera Mortality, PhD. Thesis, Mmust, 2018.
[46] Prabir Panja, Plankton population and cholera disease transmission: A mathematical modeling study, International Journal of Bifurcation and Chaos 30(4) (2020); Article 2050054.
DOI: https://doi.org/10.1142/S0218127420500546
[47] Mercedes Pascual, Menno J. Bouma and Andrew P. Dobson, Cholera and climate: Revisiting the quantitative evidence, Microbes and Infection 4(2) (2002), 237-245.
DOI: https://doi.org/10.1016/S1286-4579(01)01533-7
[48] M. Mujibur Rahaman, M. A. Majid, A. K. M. Jamiul Alam and M. Rafiqul Islam, Effects of doxycycline in actively purging cholera patients: A double-blind clinical trial, Antimicrobial Agents and Chemotherapy 10(4) (1976), 610-612.
DOI: https://doi.org/10.1128/aac.10.4.610
[49] S. Saber, E. Bashier,
DOI: https://doi.org/10.4172/2168-9679.1000416
[50] Anulekha Samadder, Koushik Ghosh and Kripasindhu Chaudhuri, A dynamical model for the spread of cholera near an aquatic reservoir, World Journal of Modelling and Simulation 10(4) (2014), 273-279.
[51] Zhisheng Shuai, Joseph H. Tien and P. Van den Driessche, Cholera models with hyperinfectivity and temporary immunity, Bulletin of Mathematical Biology 74(10) (2012), 2423-2445.
DOI: https://doi.org/10.1007/s11538-012-9759-4
[52] Zhisheng Shuai and P. Van den Driessche, Global dynamics of cholera models with differential infectivity, Mathematical Biosciences 234(2) (2011), 118-126.
DOI: https://doi.org/10.1016/j.mbs.2011.09.003
[53] Chenwei Song, Rui Xu, Ning Bai, Xiao Hong Tian and Jia Zhe Lin, Global dynamics and optimal control of a cholera transmission model with vaccination strategy and multiple pathways, Mathematical Biosciences and Engineering 17(4) (2020), 4210-4224.
DOI: https://doi.org/10.3934/mbe.2020233
[54] Pauline Van den Driessche and James Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences 180(1-2) (2002), 29-48.
DOI: https://doi.org/10.1016/s0025-5564(02)00108-6
[55] Jin Wang and Chairat Modnak, Modeling cholera dynamics with controls, Canadian Applied Mathematics Quarterly 19(3) (2011), 255-273.
[56] Xueying Wang, Daozhou Gao and Jin Wang, Influence of human behavior on cholera dynamics, Mathematical biosciences 267 (2015), 41-52.
DOI: https://doi.org/10.1016/j.mbs.2015.06.009
[57] Xueying Wang and Jin Wang, Analysis of cholera epidemics with bacterial growth and spatial movement, Journal of Biological Dynamics 9(sup1) (2015), 233-261.
DOI: https://doi.org/10.1080/17513758.2014.974696
[58] Xueying Wang and Jin Wang, Modeling the within-host dynamics of cholera: Bacterial-viral interaction, Journal of Biological Dynamics 11(sup2) (2017), 484-501.
DOI: https://doi.org/10.1080/17513758.2016.1269957
[59] Xueying Wang, Ruiwen Wu and Xiao-Qiang Zhao, A reaction-advection-diffusion model of cholera epidemics with seasonality and human behavior change, Journal of Mathematical Biology 84(5) (2022), 1-30.
DOI: https://doi.org/10.1007/s00285-022-01733-3
[60] Yujie Wang and Junjie Wei, Global dynamics of a cholera model with time delay, International Journal of Biomathematics 6(1) (2013); Article 1250070.
DOI: https://doi.org/10.1142/S1793524512500702
[61] Şuayip Yüzbaşi and Mohammad Izadi, Bessel-quasilinearization technique to solve the fractional-order HIV-1 infection of CD4+ T-cells considering the impact of antiviral drug treatment, Applied Mathematics and Computation 431 (2022); Article 127319.
DPO: https://doi.org/10.1016/j.amc.2022.127319
[62] Şuayip Yüzbaşi and Murat Karaçayır, A Galerkin-type method for solving a delayed model on HIV infection of CD4+ T-cells, Iranian Journal of Science and Technology, Transactions A: Science 42(3) (2018), 1087-1095.
DOI: https://doi.org/10.1007/s40995-018-0529-5
[63] Şuayip Yüzbaşi and Gamze Yıldırım, A Pell-Lucas collocation approach for an SIR model on the spread of the novel coronavirus (SARS CoV-2) pandemic: The case of turkey, Mathematics 11(3) (2023); Article 697.
DOI: https://doi.org/10.3390/math11030697
[64] Xue-Yong Zhou, Xiang-Yun Shi and Jing-An Cui, Dynamic behavior of a delay cholera model with constant infectious period, Journal of Applied Analysis & Computation 10(2) (2020), 598-623.