Journal Menu
Volume 14, Issue 2 (2022), Pages [121] - [179]
SOME VON NEUMANN-
[1] J. Alonso, P. Martín and P. L. Papini, Wheeling around von Neumann-Jordan constant in Banach spaces, Studia Mathematica 188(2) (2008), 135-150.
DOI: https://doi.org/10.4064/SM188-2-3
[2] M. Baronti,
DOI: https://doi.org/10.1006/jmaa.2000.6959
[3] E. Casini, About some parameters of normed linear spaces, Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali: Rendiconti Lincei. Matematica e Applicazioni 80(1-2) (1986), 11-15.
[4] J. A. Clarkson, The von Neumann-Jordan constant for the Lebesgue spaces, Annals of Mathematics 38 (1937), 114-115.
DOI: https://doi.org/10.2307/1968512
[5] Y. Cui, W. Huang, H. Hudzik and R. Kaczmarek, Generalized von Neumann-Jordan constant and its relationship to the fixed point property, Fixed Point Theory and Applications (2015); Article 40, 1-11 pp.
DOI: https://doi.org/10.1186/s13663-015-0288-3
[6] M. M. Day, Some characterizations of inner-product spaces, Transactions of the American Mathematical Society 62(2) (1947), 320-337.
DOI: https://doi.org/10.2307/1990458
[7] J. Gao, The Uniform Degree of the Unit Ball of a Banach Space,
[8] J. Gao, A Pythagorean approach in Banach spaces, Journal of Inequalities and Applications (2006); Article ID 94982, 1-11 pp.
DOI: https://doi.org/10.1155/JIA/2006/94982
[9] K. Goebel and S. Prus, Elements of Geometry of Balls in Banach Spaces,
DOI: https://doi.org/10.1093/oso/9780198827351.001.0001
[10] P. Jordan and J. von Neumann, On inner products in linear metric spaces, Annals of Mathematics 36(3) (1935), 719-723.
DOI: https://doi.org/10.2307/1968653
[11] R. C. James, Uniformly non-square Banach spaces, Annals of Mathematics 80(3) (1964), 542-550.
DOI: https://doi.org/10.2307/1970663
[12] H. Jiao and B. Pang, Pythagorean parameters and normal structure in Banach spaces, Journal of Inequalities in Pure and Applied Mathematics 9(1) (2008), 557-562.
[13] M. Kato, L. Maligranda and Y. Takahashi, On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Studia Mathematica 144(3) (2010), 275-295.
DOI: https://doi.org/10.4064/sm144-3-5
[14] H. Martini, K. J. Swanepoel and G. Weiss, The geometry of Minkowski spaces: A survey, Part I, Expositiones Mathematicae 19(2) (2001), 97-142.
DOI: https://doi.org/10.1016/S0723-0869(01)80025-6
[15] J. J. Schäffer, Geometry of Spheres in Normed Spaces,
[16] D. Tingley, Isometries of the unit sphere, Geometriae Dedicata 22(3) (1987), 371-378.
DOI: https://doi.org/10.1007/BF00147942
[17] Y. Takahashi and M. Kato, A simple inequality for the von Neumann-Jordan and James constants of a Banach spaces, Journal of Mathematical Analysis and Applications 359(2) (2009), 602-609.
DOI: https://doi.org/10.1016/j.jmaa.2009.05.051
[18] R. Tanaka, Tingley’s problem on symmetric absolute normalized norms on Acta Mathematica Sinica (English Series) 30(8) (2014), 1324-1340.
DOI: https://doi.org/10.1007/s10114-014-3491-y
[19] F. Wang and B. Pang, Some inequalities concerning the James constant in Banach spaces, Journal of Mathematical Analysis and Applications 353(1) (2009), 305-310.
DOI: https://doi.org/10.1016/j.jmaa.2008.12.013
[20] C. Yang and H. Li, An inequality between Jordan-von Neumann constant and James constant, Applied Mathematics Letters 23(3) (2010), 277-281.
DOI: https://doi.org/10.1016/j.aml.2009.09.023
[21] Z. F. Zuo and Y. Cui, Some modulus and normal structure in Banach space, Journal of Inequalities and Applications (2009); Article ID 676373, 15 pp.
DOI: https://doi.org/10.1155/2009/676373
[22] Z. F. Zuo and C. Tang, Schäffer-type constant and uniform normal structure in Banach spaces, Annals of Functional Analysis 7(3) (2016), 452-461.
DOI: https://doi.org/10.1215/20088752-3605636
[23] Z. F. Zuo and C. Tang, On Jordan-von Neumann type constants and normal structure in Banach spaces, Acta Mathematica Sinica, Chinese Series 60(3) (2017), 383-388.
[24] Z. F. Zuo, The normal structure and parametrized Jordan-von Neumann type constant, Acta Mathematica Sinica (Chinese Series) 63(6) (2020), 655-660.