Journal Menu
Volume 13, Issue 1 (2021), Pages [1] - [97]
GLOBAL SOLUTION FOR THE COUPLED YANG-MILLS-BOLTZMANN SYSTEM IN A BIANCHI TYPE 1 SPACE-TIME
[1] R. D. Ayissi and R. M. Etoua, Optimal control problem and viscosity solutions for the Yang-Mills charged Bianchi models, Advances in Pure and Applied Mathematics 8(2) (2017), 129-140.
DOI: https://doi.org/10.1515/apam-2017-0001
[2] R. D. Ayissi, N. Noutchegueme, R. M. Etoua and H. P. Mbeutcha Tchagna, Viscosity solutions for the one-body Liouville equation in Yang?Mills charged Bianchi Models with Non-Zero mass, Letters in Mathematical Physics 105(9) (2015), 1289-1299.
DOI: https://doi.org/10.1007/s11005-015-0777-7
[3] R. D. Ayissi, N. Noutchegueme and H. P. M. Tchagna, The Maxwell?Boltzmann?Euler system with a massive scalar field in all Bianchi spacetimes, Advances in Mathematical Physics (2013); Article ID 679054.
DOI: https://doi.org/10.1155/2013/679054
[4] Y. Choquet-Bruhat and N. Noutchegueme, Système de Yang?Mills?Vlasov en jauge temporelle, Annales de l'I.H.P. Physique Théorique 55(3) (1991), 759-789.
[5] Y. Choquet-Bruhat and
[6] Dongo David, Noutchegueme Norbert and Nguelemo Kenfack Abel, Regular solution for the generalized relativistic Boltzmann equation in Yang?Mills field, General Letters in Mathematics 6(2) (2019), 61-83.
DOI: https://doi.org/10.31559/glm2019.6.2.2
[7] Dongo David and Nguelemo Kenfack Abel, Regular solutions for the relativistic Boltzmann equation in Yang-Mills field, Advances in Pure and Applied Mathematics 11(1) (2020), 1-24.
DOI: https://doi.org/10.21494/ISTE.OP.2020.0541
[8] D. Dongo, A. K. Nguelemo and N. Noutchegueme, The coupled Yang-Mills-Boltzmann system in Bianchi type I space-time, Reports on Mathematical Physics 86(2) (2020), 219-240.
DOI: https://doi.org/10.1016/S0034-4877(20)30073-2
[9] D. Dongo,
DOI: https://doi.org/10.26713/cma.v11i1.1338
[10] N. Noutchegueme and R. D. Ayissi, Global existence of solutions to the Maxwell?Boltzmann system in a Bianchi type 1 space-time, Advanced Studies in Theoretical Physics 4(18) (2010), 855-878.
[11] N. Noutchegueme and D. Dongo, Global existence of solutions for the Einstein?Boltzmann system in a Bianchi type I space-time for arbitrarily large initial data, Classical and Quantum Gravity 23(9) (2006), 2979-3004.
DOI: https://doi.org/10.1088/0264-9381/23/9/013
[12] N. Noutchegueme, D. Dongo and E. Takou, Global existence of solutions for the relativistic Boltzmann equation with arbitrarily large initial data on a Bianchi type I space-time, General Relativity and Gravitation 37(12) (2005), 2047-2062.
DOI: https://doi.org/10.1007/s10714-005-0179-8
[13] N. Noutchegueme, P. Noundjeu, S. B. Tchapnda and D. Tegankong, Yang?Mills?Vlasov system on a curved space-time, Contemporary Problems in Mathematical Physics (2002), 409-417.
DOI: https://doi.org/10.1142/9789812777560_0016
[14] N. Noutchegueme and P. Noundjeu, Systeme de Yang?Mills?Vlasov pour des particules avec densité de charge de Jauge non-Abélienne sur un espace-temps courbe, Annales Henri Poincaré 1 (2000), 385-404.
DOI: https://doi.org/10.1007/s000230050008
[15] A. D. Rendall and C. Uggla, Dynamics of spatially homogeneous locally rotationally symmetric solutions of the Einstein-Vlasov equations, Classical and Quantum Gravity 17(22) (2000), 4697-4714.
DOI: https://doi.org/10.1088/0264-9381/17/22/310
[16] H. Lee and
DOI: https://doi.org/10.1016/j.jde.2017.02.004
[17] H. Lee,
DOI: https://doi.org/10.1007/s10714-020-02699-7
[18] M. Dossa and M. Nanga, Goursat problem for the Yang?Mills?Vlasov system in temporal gauge, Electronic Journal of Differential Equations 2011(163) (2011), 1-22.
[19] N. Noutchegueme and A. Nangue, Global existence of solutions to the Einstein?Maxwell?Massive scalar field system in 3 + 1 formulation on Bianchi spacestimes, Applicable Analysis 93(5) (2012), 1036-1056.
DOI: https://doi.org/10.1080/00036811.2013.816684
[20] M. Dossa and C. Tadmon, The Goursat problem for the Einstein-Yang?Mills?Higgs system in weighted Sobolev spaces, Comptes Rendus Mathematique 348(1-2) (2010), 35-39.
DOI: https://doi.org/10.1016/j.crma.2009.11.014
[21] M. Dossa and C. Tadmon, The characteristic Initial value problem for the Einstein?Yang?Mills?Higgs system in weighted Sobolev spaces, Applied Mathematics Research eXpress 2 (2010), 154-231.
DOI: https://doi.org/10.1093/amrx/abq014
[22] Y. Choquet-Bruhat, C. DeWitt-Morette and M. Dillard-Bleick, Analysis, Manifolds and Physics 1,
[23] A. Lichnerowicz, Théories Relativistes de la Gravitation et de l'Électromagnétisme, Masson et Cie Edition, 1995.
[24] A. D. Rendall, Global properties of locally spatially homogeneous cosmological models with matter, Mathematical Proceedings of the Cambridge Philosophical Society 118(3) (1995), 511-526.
DOI: https://doi.org/10.1017/S0305004100073837
[25] A. D. Rendall, Partial Differential Equations in General Relativity, Volume 16, Graduate Text in Mathematics, Oxford: Oxford University Press, 2008.
[26] H. Lee, The Einstein?Vlasov system with a scalar field, Annales Henri Poincare 6 (2005), 697-723.
DOI: https://doi.org/10.1007/s00023-005-0220-1
[27] R. T. Glassey and J. Schaeffer, The relativistic Vlasov?Maxwell system in two space dimensions: Part 1, Archive for Rational Mechanics and Analysis 141(4), (1998), 331-354.
DOI: https://doi.org/10.1007/s002050050079
[28] R. T. Glassey and J. Schaeffer, The relativistic Vlasov?Maxwell system in two space dimensions: Part 2, Archive for Rational Mechanics and Analysis 141(4) (1998), 355-374.
DOI: https://doi.org/10.1007/s002050050080
[29] R. T. Glassey, Global solutions to the Cauchy problem for the relativistic Boltzmann equation with near?vacuum data, Communications in Mathematical Physics 264 (2006); Article 705.
DOI: https://doi.org/10.1007/s00220-006-1522-y
[30] N. Noutchegueme and D. Dongo, Global existence of solutions for the Einstein?Boltzmann system in a Bianchi type I space-time for arbitrary large initial data, Classical and Quantum Gravity 23(9) (2006), 2979-3004.
DOI: https://doi.org/10.1088/0264-9381/23/9/013
[31] D. Bancel and Y. Choquet-Bruhat, Existence, uniqueness and local stability for the Einstein?Maxwell?Boltzman system, Communication in Mathematical Physics 33(2) (1973), 83-96.
DOI: https://doi.org/10.1007/BF01645621
[32] D. Bancel, Problème de Cauchy pour l'équation de Boltzmann en relativité générale, Annales de l'I.H.P. Physique Théorique 18(3) (1973), 263-284.
[33] N. Noutchegueme and
[34] N. Noutchegueme, D. Dongo and F. E. Djiofack, Global regular solution for the Einstein?Maxwell?Boltzmann?scalar field system in a Bianchi type: I space-time, Journal of Advances in Mathematics 13(1) (2017), 7087-7118.
[35] L. Arlotti, N. Bellomo and E. De Angelis, Generalized kinetic (Boltzmann) models: Mathematical structures and applications, Mathematical Models and Methods in Applied Sciences 12(4) (2002), 567-591.