Journal Menu
Volume 13, Issue 1 (2021), Pages [1] - [97]
THE GENERALIZATIONS OF LOCAL FRACTIONAL HILBERT-TYPE INEQUALITIES
[1] Ts. Batbold, M. Krnić, J. Pečarić and P. Vuković, Further Development of Hilbert-Type Inequalities, Element, Zagreb, 2017.
[2] H. Budak, M. Z. Sarikaya and H. Yildirim, New inequalities for local fractional integrals, Iranian Journal of Science and Technology, Transactions A: Science 41(4) (2017), 1039-1046.
DOI: https://doi.org/10.1007/s40995-017-0315-9
[3] G.-S. Chen, Generalizations of Hölder’s and some related integral inequalities on fractal space, Journal of Function Spaces and Applications (2013); Article ID 198405, 9 pp.
DOI: https://doi.org/10.1155/2013/198405
[4] G.-S. Chen, J. M. Srivastava, P. Wang and W. Wei, Some further generalizations of Hölder’s inequality and related results on fractal space, Abstract and Applied Analysis (2014); Article ID 832802, 7 pp.
DOI: https://doi.org/10.1155/2014/832802
[5] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Second Edition, Cambridge University Press, Cambridge, 1967.
[6] G. Jumarie, Fractional Euler’s integral of first and second kinds: Application to fractional Hermite’s polynomials and to probability density of fractional order, Journal of Applied Mathematics and Informatics 28(1-2) (2010), 257-273.
[7] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and their Integrals and Derivatives, Kluwer Academic Publishers, Boston, 1991.
DOI: https://doi.org/10.1007/978-94-011-3562-7
[8] M. Krnić, J. Pečarić, I. Perić and P. Vuković, Recent Advances in Hilbert-Type Inequalities, Element,
[9] Ts. Batbold, M. Krnić and P. Vuković, A unified approach to fractal Hilbert-type inequalities, Journal of Inequalities and Applications (2019); Article 117, pp. 13.
DOI: https://doi.org/10.1186/s13660-019-2076-9
[10] M. Krnić and P. Vuković, Multidimensional Hilbert-type inequalities obtained via local fractional calculus, Acta Applicandae Mathmaticae 169(1) (2020), 667-680.
DOI: https://doi.org/10.1007/s10440-020-00317-x
[11] Yingdi Liu and Qiong Liu, The structural features of Hilbert-type local fractional integral inequalities with abstract homogeneous kernel and its applications, Fractals 28(4) (2020); Article 2050111.
DOI: https://doi.org/10.1142/S0218348X2050111X
[12] Q. Liu, A Hilbert-type fractional integral inequality with the kernel of Mittag-Leffler function and its applications, Mathematical Inequalities and Applications 21(3) (2018), 729-737.
DOI: https://doi.org/10.7153/mia-2018-21-52
[13] Q. Liu and D. Chen, A Hilbert-type integral inequality on the fractal spaces, Integral Transforms and Special Functions 28(10) (2017), 772-780.
DOI: https://doi.org/10.1080/10652469.2017.1359588
[14] Q. Liu and W. Sun, A Hilbert-type fractal integral inequality and its applications, Journal of Inequalities and Applications (2017); Article 83, pp. 8.
DOI: https://doi.org/10.1186/s13660-017-1360-9
[15] M. Z. Sarikaya and H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proceedings of the American Mathematical Society 145(4) (2017), 1527-1538.
DOI: https://doi.org/10.1090/proc/13488
[16] M. Z. Sarikaya, T. Tunc and H. Budak, On generalized some integral inequalities for local fractional integrals, Applied Mathematics and Computation 276(5) (2016), 316-323.
DOI: https://doi.org/10.1016/j.amc.2015.11.096
[17] X. J. Yang, Local Fractional Functional Analysis and its Applications, Asian Academic Publisher Limited,
[18] X. J. Yang, Advanced Local Fractional Calculus and its Applications, World Science Publishers,
[19] X. J. Yang, D. Baleanu and H. M. Srivastava, Local Fractional Integral Transforms and their Applications, Elsevier Ltd., 2016.