Journal Menu
Volume 13, Issue 1 (2021), Pages [1] - [97]
ON MULTIPLICITY OF THE LAPLACIAN EIGENVALUE 2 IN BICYCLIC GRAPHS
[1] S. Akbari, D. Kiani and M. Mirzakhah, The multiplicity of Laplacian eigenvalue two in unicyclic graphs, Linear Algebra and its Applications 445 (2014), 18-28.
DOI: https://doi.org/10.1016/j.laa.2013.11.022
[2] D. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs Theory and Applications, 3rd Edition, Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995.
[3] M. Farkhondeh, M. Habibi, D. A. Mojdeh and Y. Rao, Some bicyclic graphs having 2 as their Laplacian eigenvalues, Mathematices 7(12) (2019); Article 1233.
DOI: https://doi.org/10.3390/math7121233
[4] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czechoslovak Mathematical Journal 25(4) (1975), 619-633.
DOI: https://doi.org/10.21136/CMJ.1975.101357
[5] R. Grone, R. Merris and V. S. Sunder, The Laplacian spectrum of a graph, SIAM Journal on Matrix Analysis and Applications 11(2) (1990), 218-238.
DOI: https://doi.org/10.1137/0611016
[6] J. M. Guo, On the second largest Laplacian eigenvalue of trees, Linear Algebra and its Applications 404 (2005), 251-261.
DOI: https://doi.org/10.1016/j.laa.2005.02.031
[7] P. V. Mieghem, Graph Spectra for Complex Networks,
DOI: https://doi.org/10.1017/CBO9780511921681
[8] B. Mohar, The Laplacian Spectrum of Graphs, In: Y. Alavi, G. Chartrand, O. R. Oellermann and A. J. Schwenk (Editors), Graph Theory, Combinatorics, and Applications 2 (1991), 871-898.