Journal Menu
Volume 13, Issue 1 (2021), Pages [1] - [97]
BAYESIAN ESTIMATION FOR THE PARAMETER OF AREA BIASED MAXWELL DISTRIBUTION
[1] R. K. Tyagi and S. K. Bhattacharya, Bayes estimation of the Maxwell’s velocity distribution function, Statistica, Anno XLIX 4 (1989a), 563-567.
[2] R. K. Tyagi and S. K. Bhattacharya, A note on the MVU estimation of reliability for the Maxwell failure distribution, Estadistica 41(137), (1989b), 73-79.
[3] A. Chaturvedi and U. Rani, Classical and Bayesian reliability estimation of the generalized Maxwell failure distribution, Journal of Statistical Research 32 (1998), 113-120.
[4] A. K. Rao, H. Pandey and K. L. Singh, Bayesian estimation of the parameter of the p-dimensional size-biased Rayleigh distribution, Lithuanian Journal of Statistics 56(1) (2017), 88-91.
[5] A. K. Rao and H. Pandey, Parameter estimation for the class of life-time distributions, Bulletin of Mathematics and Statistics Research 8(2) (2020), 42-48.
DOI: https://doi.org/10.33329/bomsr.8.2.42
[6] A. K. Rao and H. Pandey, Parameter estimation of Lomax distribution under weighted loss function, Scholars Journal of Physics, Mathematics and Statistics 7(7) (2020), 104-109.
DOI: https://doi.org/10.36347/sjpms.2020.v07i07.005
[7] Aijaz Ahmad Dar, A. Ahmed and J. A. Reshi, Characterization and estimation of weighted Maxwell-Boltzmann distribution, Applied Mathematics & Information Sciences 12(1) (2018), 193-302.
DOI: https://doi.org/10.18576/amis/120119
[8] A. Zellner, Bayesian estimation and prediction using asymmetric loss functions, Journal of the American Statistical Association 81(394) (1986), 446-451.
DOI: https://doi.org/10.2307/2289234
[9] A. P. Basu and N. Ebrahimi, Bayesian approach to life testing and reliability estimation using asymmetric loss function, Journal of Statistical Planning and Inference 29(1-2) (1991), 21-31.
DOI: https://doi.org/10.1016/0378-3758(92)90118-C
[10] J. G. Norstrom, The use of precautionary loss functions in risk analysis, IEEE Transactions on Reliability 45(3) (1996), 400-403.
DOI: https://doi.org/10.1109/24.536992
[11] R. Calabria and G. Pulcini, Point estimation under asymmetric loss functions for left-truncated exponential samples, Communications in Statistics: Theory and Methods 25(3) (1994), 585-600.
DOI: https://doi.org/10.1080/03610929608831715
[12] D. K. Dey, M. Ghosh and C. Srinivasan, Simultaneous estimation of parameters under entropy loss, Journal of Statistical Planning and Inference 15 (1987), 347-363.
DOI: https://doi.org/10.1016/0378-3758(86)90108-4
[13] D. K. Dey and Pei-San Liao Liu, On comparison of estimators in a generalized life model, Microelectronics Reliability 32(1/2) (1992), 207-221.
DOI:https://doi.org/10.1016/0026-2714(92)90099-7
[14] M. T. Wasan, Parametric Estimation,
[15] H. N. Al-Bayyati, Comparing Methods of Estimating Weibull Failure Models Using Simulation, Ph.D. Thesis,