Journal Menu
Volume 12, Issue 1 (2020) , Pages [1] - [100]
HANKEL OPERATORS ON COPSON SPACES
[1] J. M. Anderson and A. L. Shields, Coefficient multipliers of Bloch functions, Transactions of the American Mathematical Society 224(2) (1976), 255-265.
DOI: https://doi.org/10.1090/S0002-9947-1976-0419769-6
[2] G. Bennett, Factorizing the classical inequalities, Memoirs of the American Mathematical Society 120(576) (1996), 130.
DOI: http://dx.doi.org/10.1090/memo/0576
[3] G. Bennett, D. A. Stegenga and R. M. Timoney, Coefficients of Bloch and Lipschitz functions, Illinois Journal of Mathematics 25(3) (1981), 520-531.
DOI: http://dx.doi.org/10.1215/ijm/1256047167
[4] O. Blasco and M. Pavlović, Coefficient multipliers on Banach spaces of analytic functions, Revista Matemática Iberoamericana 27(2) (2011), 415-447.
DOI: http://dx.doi.org/10.4171/RMI/642
[5] S. M. Buckley, Mixed norms and analytic function spaces, Mathematical Proceedings of the
[6] R. Edwards, Fourier Series: A Modern Introduction, Vol. 1, Second Edition, Springer Verlag, New-York, 1979.
[7] V. V. Peller, Hankel operators of class and their applications (rational approximation, Gaussian processes, the problem of majorizing operators), Mathematics of the USSR-Sbornik 41(4) (1982), 443-479.
DOI: https://doi.org/10.1070/SM1982v041n04ABEH002242
[8] A. Pietsch, Operator Ideals, North Holland,
[9] A. Pietsch, Eigenvalues and s-numbers, Akademische Verlagsgesellschaft Geest & Portig K. -G., Leipzig, 1987.
[10] N. Popa, Order structures in Banach spaces of analytic functions, Complex Analysis and Operator Theory 11(8) (2017), 1765-1780.
DOI: https://doi.org/10.1007/s11785-017-0660-x
[11] H. H. Schaefer, Topological Vector Spaces, Macmillan Company,
[12] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, Inc.,
[13] J. Xiao, Holomorphic Q Classes, Lecture Notes in Mathematics, Vol. 1767, Springer Verlag,