Journal Menu
Volume 11, Issue 1 (2019), Pages [1] - [87]
BESSEL COLLOCATION APPROACH FOR SOLVING ONE-DIMENSIONAL WAVE EQUATION WITH DIRICHLET, NEUMANN BOUNDARY AND INTEGRAL CONDITIONS
[1] B. A. Boley and J. H. Weiner, Theory of Thermal Stresses, Wiley New,
[2] A. Bouziani, Strong solution for a mixed problem with nonlocal condition for certain pluriparabolic equations, Hiroshima Mathematical Journal 27(3) (1997), 373-390.
DOI: https://doi.org/10.32917/hmj/1206126957
[3] I. S. Gordeziani and G. A. Avalishvili, On the constructing of solutions of the nonlocal initial boundary value problems for one-dimensional medium oscillation equations, Matematicheskoe Modelirovanie 12(1) (2000), 94-103.
[4] B. Jumarhon and
DOI: https://doi.org/10.1006/jmaa.1995.1113
[5] S. Mesloub and A. Bouziani, On a class of singular hyperbolic equation with a weighted integral condition, International Journal of Mathematics and Mathematical Sciences 22(3) (1999), 511-519.
DOI: http://dx.doi.org/10.1155/S0161171299225112
[6] L. S. Pulkina, A non-local problem with integral conditions for hyperbolic equations, Electronic Journal of Differential Equations (1999), 1-6; Article 45.
[7] M. Renardy, W. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, Longman Science and Technology, England, 1987.
[8] V. V. Shelukhin, A non-local in time model for radionuclides propagation in Stokes fluids, dynamics of fluids with free boundaries, Siberian Branch of the Russian Academy of Sciences, Institute of Hydrodynamics 107 (1993), 180-193.
[9] A. Bouziani, Initial-boundary value problem with a nonlocal condition for a viscosity equation, International Journal of Mathematics and Mathematical Sciences 30(6) (2002), 327-338.
DOI: http://dx.doi.org/10.1155/S0161171202004167
[10] M. Dehghan, On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation, Numerical Methods for Partial Differential Equations 21(1) (2005), 24-40.
DOI: https://doi.org/10.1002/num.20019
[11] S. A. Yousefi, Z. Barikbin and M. Dehghan, Bernstein Ritz-Galerkin method for solving an initial-boundary value problem that combines Neumann and integral condition for the wave equation, Numerical Methods for Partial Differential Equations 26(5) (2010), 1236-1246.
DOI: https://doi.org/10.1002/num.20521
[12] F. Shakeri and M. Dehghan, The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition, Computers & Mathematics with Applications 56(9) (2008), 2175-2188.
DOI: https://doi.org/10.1016/j.camwa.2008.03.055
[13] M. Dehghan and A. Saadatmandi, Variational iteration method for solving the wave equation subject to an integral conservation condition, Chaos, Solitons & Fractals 41(3) (2009), 1448-1453.
DOI: https://doi.org/10.1016/j.chaos.2008.06.009
[14] W. T. Ang, A numerical method for the wave equation subject to a non-local conservation condition, Applied Numerical Mathematics 56(8) (2006), 1054-1060.
DOI: https://doi.org/10.1016/j.apnum.2005.09.006
[15] A. Saadatmandi and M. Dehghan, Numerical solution of the one-dimensional wave equation with an integral condition, Numerical Methods for Partial Differential Equations 23(2) (2007), 282-292.
DOI: https://doi.org/10.1002/num.20177
[16] S. T. Mohyud-Din, A. Yıldırım and Y. Kaplan, Homotopy perturbation method for one-dimensional hyperbolic equation with integral conditions, Zeitschrift für Naturforschung A 65(12) (2010), 1077-1080.
DOI: https://doi.org/10.1515/zna-2010-1210
[17] R. Jiwari, Lagrange interpolation and modified cubic B-spline differential quadrature methods for solving hyperbolic partial differential equations with Dirichlet and Neumann boundary conditions, Computer Physics Communications 193 (2015), 55-65.
DOI: https://doi.org/10.1016/j.cpc.2015.03.021
[18] M. Ramezani, M. Dehghan and M. Razzaghi, Combined finite difference and spectral methods for the numerical solution of hyperbolic equation with an integral condition, Numerical Methods for Partial Differential Equations 24(1) (2008), 1-8.
DOI: https://doi.org/10.1002/num.20230
[19] M. Dehghan and M. Lakestani, The use of cubic B-spline scaling functions for solving the one-dimensional hyperbolic equation with a nonlocal conservation condition, Numerical Methods for Partial Differential Equations 23(6) (2007), 1277-1289.
DOI: https://doi.org/10.1002/num.20209
[20] M. Dehghan, A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications, Numerical Methods for Partial Differential Equations 22(1) (2006), 220-257.
DOI: https://doi.org/10.1002/num.20071
[21] M. Dehghan, Efficient techniques for the second-order parabolic equation subject to nonlocal specifications, Applied Numerical Mathematics 52(1) (2005), 39-62.
DOI: https://doi.org/10.1016/j.apnum.2004.02.002
[22] B. Bülbül and M. Sezer, A Taylor matrix method for the solution of a two-dimensional linear hyperbolic equation, Applied Mathematics Letters 24(10) (2011), 1716-1720.
DOI: https://doi.org/10.1016/j.aml.2011.04.026
[23] Ş. Yüzbaşı and N. Şahin, Numerical solutions of singularly perturbed one-dimensional parabolic convection-diffusion problems by the Bessel collocation method, Applied Mathematics and Computation 220 (2013), 305-315.
DOI: https://doi.org/10.1016/j.amc.2013.06.027
[24] Ş. Yüzbaşı, A collocation method based on Bernstein polynomials to solve nonlinear Fredholm–Volterra integro-differential equations, Applied Mathematics and Computation 27 (2016), 142-154.
DOI: https://doi.org/10.1016/j.amc.2015.09.091
[25] Ş. Yüzbaşı, A Numerical method for solving second-order linear partial differential equations under dirichlet, Neumann and robin boundary conditions, International Journal of Computational Methods 14(2) (2017), 1-20; Article ID 1750015.
DOI: https://doi.org/10.1142/S0219876217500153
[26] V. Kumar, R. K. Gupta and R. Jiwari, Lie group analysis, numerical and non-traveling wave solutions for the (2 + 1)-dimensional diffusion–advection equation with variable coefficients, Chinese Physics B 23(3) (2014); Article 030201.
DOI: https://doi.org/10.1088/1674-1056/23/3/030201
[27] R. Jiwari, S. Pandit and M. E. Koksal, A class of numerical algorithms based on cubic trigonometric B-spline functions for numerical simulation of nonlinear parabolic problems, Computational and Applied Mathematics 38(3) (2019); Article 140.
DOI: https://doi.org/10.1007/s40314-019-0918-1
[28] J. P. Mahmoud, M. Y. Rahimi-Ardabili and S. Shahmorad, Numerical solution of the system of fredholm integro-differantial equations by the Tau method, Applied Mathematics and Computation 168(1) (2005), 465-478.
DOI: https://doi.org/10.1016/j.amc.2004.09.026
[29] S. Shahmorad, Numerical solution of the general form linear Fredholm–Volterra integro-differential equations by the Tau method with an error estimation, Applied Mathematics and Computation 167(2) (2005), 1418-1429.
DOI: https://doi.org/10.1016/j.amc.2004.08.045
[30] İ. Çelik, Collocation method and residual correction using Chebyshev series, Applied Mathematics and Computation 174(2) (2006), 910-920.
DOI: https://doi.org/10.1016/j.amc.2005.05.019
[31] F. A. Oliveira, Collocation and residual correction, Numerische Mathematik 36(1) (1980), 27-31.