Journal Menu
Volume 11, Issue 1 (2019), Pages [1] - [87]
EXISTENCE OF SOLUTIONS FOR A CLASS OF NONLINEAR MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSIVE AND INTEGRAL BOUNDARY CONDITIONS
[1] M. Rahimy, Applications of fractional differential equations, Applied Mathematical Sciences 4(50) (2010), 2453-2461.
[2] J. Deng and L. Ma, Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations, Applied Mathematics Letters 23(6) (2010), 676-680.
DOI: https://doi.org/10.1016/j.aml.2010.02.007
[3] C. Yu and G. Gao, On the solution of nonlinear fractional order differential equation, Nonlinear Analysis: Theory, Methods & Applications 63(5-7) (2005), e971-e976.
DOI: https://doi.org/10.1016/j.na.2005.01.008
[4] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, INC, 1993.
[5] R. Almeida, N. R. O. Bastos and M. T. T. Monteiro, Modeling some real phenomena by fractional differential equations, Mathematical Methods in the Applied Sciences 39(16) (2016), 4846-4855.
DOI: https://doi.org/10.1002/mma.3818
[6] Q. P. Li, C. X. Hou, L. Y. Sun and Z. L. Han, Existence and uniqueness for a class of multi-term fractional differential equations, Journal of Applied Mathematics and Computing 53(1-2) (2017), 383-395.
DOI: https://doi.org/10.1007/s12190-015-0973-8
[7] J. R. Wang, Y. L. Yang and W. Wei, Nonlocal impulsive problems for fractional differential equations with time-varying generating operators in Banach spaces, Opuscula Mathematica 30(3) (2010), 361-381.
DOI: http://dx.doi.org/10.7494/OpMath.2010.30.3.361
[8] Z. Yan and F. Lu, Approximate controllability of a multi-valued fractional impulsive stochastic partial integro-differential equation with infinite delay, Applied Mathematics and Computation 292 (2017), 425-447.
DOI: https://doi.org/10.1016/j.amc.2016.06.035
[9] S. Asawasamrit, S. K. Ntouyas, P. Thiramanus and J. Tariboon, Periodic boundary value problems for impulsive conformable fractional integro-differential equations, Boundary Value Problems (2016), Article 122.
DOI: https://doi.org/10.1186/s13661-016-0629-0
[10] P. Balasubramaniam,
DOI: https://doi.org/10.1007/s40840-014-0054-4
[11] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
DOI: https://doi.org/10.1142/0906
[12] T. L. Guo and
DOI: https://doi.org/10.1016/j.camwa.2011.12.054
[13] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific,
DOI: https://doi.org/10.1142/2892
[14] S. T. Zavalishchin and A. N. Sesekin, Dynamic Impulse Systems: Theory and Applications, Kluwer Academic Publishers Group,
[15] B. Ahmad and S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Analysis: Hybrid Systems 3(3) (2009), 251-258.
DOI: https://doi.org/10.1016/j.nahs.2009.01.008
[16] B. Ahmad and
DOI: https://doi.org/10.1016/j.nahs.2009.09.002
[17] A. Anguraj, P. Karthikeyan, M. Rivero and J. J. Trujillo, On new existence results for fractional integro-differential equations with impulsive and integral conditions, Computers and Mathematics with Applications 66(12) (2014), 2587-2594.
DOI: https://doi.org/10.1016/j.camwa.2013.01.034
[18] Z. Liu and X. Li, Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equations, Communications in Nonlinear Science and Numerical Simulation 18(6) (2013), 1362-1373.
DOI: https://doi.org/10.1016/j.cnsns.2012.10.010
[19] X. Zhang, T. Shu, H. Cao, Z. Liu and W. Ding, The general solution for impulsive differential equations with Hadamard fractional derivative of order Advances in Difference Equations (2016), Article 14.
DOI: https://doi.org/10.1186/s13662-016-0744-3
[20] X. Liu and M. Jia, Existence of solutions for the integral boundary value problems of fractional order impulsive differential equations, Mathematical Methods in the Applied Sciences 39(3) (2016), 475-487.
DOI: https://doi.org/10.1002/mma.3495
[21] Y. Liu, Boundary value problems of multi-term fractional differential equations with impulse effects, Mathematical Methods in the Applied Sciences 39(18) (2016), 5436-5451.
DOI: https://doi.org/10.1002/mma.3928
[22] J. Losada, J. J. Nieto and E. Pourhadi, On the attractivity of solutions for a class of multi-term fractional functional differential equations, Journal of Computational and Applied Mathematics 312 (2017), 2-12.
DOI: https://doi.org/10.1016/j.cam.2015.07.014
[23] H. Zhang, Iterative solutions for fractional nonlocal boundary value problems involving integral conditions, Boundary Value Problems (2016), Article 3.
DOI: https://doi.org/10.1186/s13661-015-0517-z
[24] X. Zhang, M. Feng and W. Ge, Existence of solutions of boundary value problems with integral boundary conditions for second-order impulsive integro-differential equations in Banach spaces, Journal of Computational and Applied Mathematics 233(8) (2010), 1915-1926.
DOI: https://doi.org/10.1016/j.cam.2009.07.060
[25] Y. Wang, Positive solutions for a system of fractional integral boundary value problem, Boundary Value Problems (2013), Article 256.
DOI: https://doi.org/10.1186/1687-2770-2013-256
[26] A. Guezane-Lakoud and R. Khaldi, Solvability of a fractional boundary value problem with fractional integral condition, Nonlinear Analysis: Theory, Methods & Applications 75(4) (2012), 2692-2700.
DOI: https://doi.org/10.1016/j.na.2011.11.014
[27] X. Fu and X. Bao, Some existence results for nonlinear fractional differential equations with impulsive and fractional integral boundary conditions, Advances in Difference Equations (2014), Article 129.
DOI: https://doi.org/10.1186/1687-1847-2014-129
[28] Rahmat Ali Khan and Hasib Khan, On existence of solution for multi points boundary value problem, Journal of Fractional Calculus and Applications 5(2) (2014), 121-132.
[29] X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations, Applied Mathematics Letters 22(1) (2009), 64-69.