Journal Menu
Volume 10, Issue 2 (2018), Pages [41] - [153]
INTUITIONISTIC FUZZY I-CONVERGENT DIFFERENCE DOUBLE SEQUENCE SPACES
[1] L. A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338-353.
DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
[2] K. Wu, Convergences of fuzzy sets based on decomposition theory and fuzzy polynomial function, Fuzzy Sets and Systems 109(2) (2000), 173-185.
DOI: https://doi.org/10.1016/S0165-0114(98)00060-8
[3] G. A. Anastassiou, Fuzzy approximation by fuzzy convolution type operators, Computers & Mathematics with Applications 48(9) (2004), 1369-1386.
DOI: https://doi.org/10.1016/j.camwa.2004.10.027
[4] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons Fractals 27(2) (2006), 331-344.
DOI: https://doi.org/10.1016/j.chaos.2005.03.019
[5] S. Vijayabalaji,
[6] S. Altundağ and
[7] S. Altundağ and
[8] E. Kamber, On applications of almost Lacunary statistical convergence in intuitionistic fuzzy normed linear spaces, IJMSET 4 (2017), 7-27.
[9] S. Altundağ and
DOI: https://doi.org/10.1186/1029-242X-2014-40
[10] V. A. Khan, K. Ebadullah and R. K. A. Rababah, Intuitionistic fuzzy zweier I-convergent sequence spaces, Functional Analysis: Theory, Method & Applications 1(1) (2015), 1-7.
[11] V. A. Khan and Yasmeen, Intuitionistic fuzzy zweier I-convergent double sequence spaces, New Trends in Mathematical Sciences 4(2) (2016), 240-247.
DOI: https://doi.org/10.20852/ntmsci.2016218260
[12] V. A. Khan, Yasmeen, H. Fatma and A. Ahmed, Intuitionistic fuzzy zweier I-convergent double sequence spaces defined by Orlicz function, European Journal of Pure and Applied Mathematics 10(3) (2017), 574-585.
[13] V. A. Khan, A. Eşi and Yasmeen, Intuitionistic fuzzy zweier I-convergent sequence spaces defined by Orlicz function, Annals of Fuzzy Mathematics and Informatics 12(3) (2016), 469-478.
[14] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloquium Mathematicum 2 (1951), 73-74.
[15] H. Fast, Sur la convergence statistique, Colloquium Mathematicum 2 (1951), 241-244.
[16] P. Kostyrko, T. Salat and
[17] P. Das, P. Kostyrko,
DOI: https://doi.org/10.2478/s12175-008-0096-x
[18] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific Journal of Mathematics 10(1) (1960), 313-334.
DOI: https://doi.org/10.2140/pjm.1960.10.313
[19] T. K. Samanta and Iqbal H. Jebril, Finite dimensional intuitionistic fuzzy normed linear space, International Journal of Open Problems in Computer Science and Mathematics 2(4) (2009), 574-591.
[20] H. Kızmaz, On certain sequence spaces, Canadian Mathematical Bulletin 24 (1981), 169-176.
DOI: https://doi.org/10.4153/CMB-1981-027-5
[21] M. Şengönül, On the zweier sequence space, Demonstratio Mathematica 40(1) (2007), 181-196.
DOI: https://doi.org/10.1515/dema-2007-0119
[22] C. S. Wang, On Nörlund sequence spaces, Tamkang Journal of Mathematics 9 (1978), 269-274.
[23] E. Malkowsky, Recent results in the theory of matrix transformations in sequence spaces, Matematički Vesnik 49 (1997), 187-196.
[24] V. Kumar and K. Kumar, On ideal convergence of sequences in intuitionistic fuzzy normed spaces, Selcuk Journal of Applied Mathematics 10(2) (2009), 27-41.
[25] M. Mursaleen and Osama H. H. Edely, Statistical convergence of double sequences, Journal of Mathematical Analysis and Applications 288(1) (2003), 223-231.
DOI: https://doi.org/10.1016/j.jmaa.2003.08.004
[26] E. Savaş and M. Mursaleen, On statistically convergent double sequences of fuzzy numbers, Information Sciences 162(3-4) (2004), 183-192.