Journal Menu
Volume 10, Issue 1 (2018) , Pages [1] - [40]
GLOBAL PROPERTIES OF THE SYMMETRIZED S-DIVERGENCE
[1] I. Csiszár, Information-type measures of difference of probability functions and indirect observations, Studia Sci. Math. Hungar 2 (1967), 299-318.
[2] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1978.
[3] F. R. S. Harold Jeffreys, An invariant form for the prior probability in estimation problems, Proc. Roy. Soc. Lon. Ser. A 186(1007) (1946), 453-461.
DOI: https://doi.org/10.1098/rspa.1946.0056
[4] S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Stat. 22(1) (1951), 79-86.
[5] S. Kullback, Information Theory and Statistics, John
[6] S. Simic, On logarithmic convexity for differences of power means, J. Inequal. Appl., Article ID 37359 (2007), p. 8.
DOI: https://doi.org/10.1155/2007/37359
[7] S. Simic, On a new moment inequality, Statist. Probab. Lett. 78(16) (2008), 2671-2678.
DOI: https://doi.org/10.1016/j.spl.2008.03.007
[8] I. J. Taneja, New developments in generalized information measures, Advances in Imaging and Electron Physics 91 (1995), 37-135.
DOI: https://doi.org/10.1016/S1076-5670(08)70106-X
[9] I. Vajda, Theory of Statistical Inference and Information, Kluwer Academic Press,