Journal Menu
Volume 8, Issue 2 (2017), Pages [81] - [142]
TWO-SOLITARY WAVE SOLUTION OF A (2+1)-DIMENSIONAL GENERALIZED KP EQUATION WITH GENERAL VARIABLE COEFFICIENTS
[1] J. K. Xue, Cylindrical and spherical ion-acoustic solitary waves with dissipative effect, Phys. Lett. A 322 (2004), 225-230.
[2] R. S. Johnson, Water waves and Korteweg-de Vries equations, J. Fluid Mech. 97 (1980), 701-709.
[3] R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, CambridgeUniversity Press,
[4] Z. Y. Yan, Backlund transformation, non-local symmetry and exact solution for (2 + 1)-dimensional variable coefficient generalized KP equations, Commun. Nonlinear Sci. Numer. Simul. 5 (2000), 31-35.
[5] H. C. Ma, Z. Y. Qin and A. P. Deng, Lie symmetry and exact solution of (2 + 1)-dimensional generalized Kadomtsev-Petviashvili equation with variable coefficients, Therm. Sci. 17(5) (2013), 1490-1493.
[6] A. Pankov and K. Pflüger, On ground-traveling waves for the generalized Kadomtsev-Petviashvili equations, Math. Phys. Anal. and Geom. 3 (2000), 33-47.
[7] M. L. Wang, X. L. Li and J. L. Zhang, Two-soliton solution to a generalized KP equation with general variable coefficients, Appl. Math. Lett. 76 (2018), 21-27.
http://dx.doi.org/10.1016/j.aml.2017.07.011.
[8] A. R. Seadawy, Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves, Eur. Phys. J. Plus 132 (2017), 29.
[9] S. F. Deng, The decay mode solutions for cylindrical KP equation, Appl. Math. Comput. 218 (2012), 5974-5981.
[10] M. L. Wang, J. L. Zhang and X. Z. Li, Decay model solutions to cylindrical KP equation, Appl. Math. Lett. 62 (2016), 29-34.
[11] X. Z. Li, J. L. Zhang and M. L. Wang, Solitary wave solutions of KP equation, cylindrical KP equation and spherical KP equation, Commun. Theor. Phys. 67 (2017), 207-211.
[12] L. T. Gai, S. Bilige and Y. Jie, The exact solutions and approximate analytic solutions of the (2 + 1)-dimensional KP equation based on symmetry method, Springer Plus 5 (2016), 1267.
[13] N. S. Saini, N. Kaur and T. S. Gill, Dust acoustic solitary waves of Kadomstev-Petviashvili (KP) equation in superthermal dusty plasma, Advan. Space Res. 55 (2015), 2873-2882.
[14] X. Z. Li, J. L. Zhang and M. L. Wang, Decay mode solutions to (2 + 1)-dimensional Burgers equation, cylindrical Burgers equation and spherical Burgers equation, J. Appl. Math. Phys. 5 (2017), 1009-1015.
[15] M. L. Wang and Y. M. Wang, A new Bäcklund transformation and multi-soliton solutions to the KdV equation with general variable coefficients, Phys. Lett. A 287 (2001), 211-216.
[16] A. R. Seadawy, Fractional solitary wave solutions of the nonlinear higher-order extended KdV equation in a stratified shear flow: Part I, Comput. Math. Appl. 70 (2015), 345-352.