Journal Menu
Volume 8, Issue 1 (2017), Pages [1] - [79]
CONVEX POLYGONS FOR APERIODIC TILING
[1] S. Akiyama, A note on aperiodic Ammann tiles, Discrete & Computational Geometry 48 (2012), 221-232.
[2] O. Bagina, Tilings the plane with convex pentagons (in Russian), Bulletin of Kemerovo State Univ. 4(48) (2011), 63-73. Available online:
http://bulletin.kemsu.ru/Content/documents/Bulletin_Kemsu_11_4.pdf (accessed on 7 November 2015).
[3] M. Gardner, On tessellating the plane with convex polygon tiles, Scientific American 233(1) (1975), 112-117.
[4] B. Grünbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman and Company, New York, 1987, pp. 15-35 (Chapter 1); pp. 113-157 (Chapter 3); pp. 471-487, pp. 492-497, pp. 517-518 (Chapter 9); and pp. 531-549, pp. 580-582 (Chapter 10).
[5] T. C. Hallard, J. F. Kennet and K. G. Richard, Unsolved Problems in Geometry, Springer-Verlag, New York, 1991, pp. 79-80, pp. 95-96 (C14); and pp. 101-103 (C18).
[6] R. B. Kershner, On paving the plane, American Mathematical Monthly 75 (1968), 839-844.
[7] M. S. Klamkin and A. Liu, Note on a result of Niven on impossible tessellations, American Mathematical Monthly 87 (1980), 651-653.
[8] C. Mann, J. McLoud-Mann and D. Von Derau, Convex pentagons that admit i-block transitive tilings, (2015); http://arxiv.org/abs/1510.01186 (accessed on 23 October 2015).
[9] M. Rao, Exhaustive search of convex pentagons which tile the plane, (2017); https://perso.ens-lyon.fr/michael.rao/publi/penta.pdf (accessed on 28 June 2017).
[10] K. Reinhardt, Über die Zerlegung der Ebene in Polygone, Inaugural-Dissertation, Univ. Frankfurt a. M., R. Noske, Boran and
[11] D. Schattschneider, Tiling the plane with congruent pentagons, Mathematics Magazine 51 (1978), 29-44.
[12] J. E. S. Socolar and J. M. Taylor, An aperiodic hexagonal tile, Journal of Combinatorial Theory 18 (2011), 2207-2231.
[13] R. Stein, A new pentagon tiler, Mathematics Magazine 58 (1985), 308.
[14] T. Sugimoto, Convex pentagons for edge-to-edge tiling, I, Forma 27 (2012), 93-103. Available online:
http://www.scipress.org/journals/forma/abstract/2701/27010093.html (accessed on 8 August 2015).
[15] T. Sugimoto, Convex pentagons for edge-to-edge tiling and convex polygons for aperiodic tiling (in Japanese), Ouyou suugaku goudou kenkyuu syuukai houkokusyuu (Proceeding of Applied Mathematics Joint Workshop) (2012), 126-131.
[16] T. Sugimoto, Convex pentagons for edge-to-edge tiling, II, Graphs and Combinatorics 31 (2015), 281-298; doi:10.1007/s00373-013-1385-x. Available online:
http://dx.doi.org/10.1007/s00373-013-1385-x (accessed on 8 August 2015).
[17] T. Sugimoto, Convex pentagons for edge-to-edge tiling, III, Graphs and Combinatorics 32 (2016), 785-799; doi:10.1007/s00373-015-1599-1. Available online:
http://dx.doi.org/10.1007/s00373-015-1599-1 (accessed on 8 August 2015).
[18] T. Sugimoto, Tiling problem: Convex pentagons for edge-to-edge tiling and convex polygons for aperiodic tiling, (2015); http://arxiv.org/abs/1508.01864 (accessed on 8 August 2015).
[19] T. Sugimoto and T. Ogawa, Properties of tilings by convex pentagons, Forma 21 (2006), 113-128. Available online:
http://www.scipress.org/journals/forma/abstract/2102/21020113.html (accessed on 8 August 2015).
[20] D. Wells, The Penguin Dictionary of Curious and Interesting Geometry, Penguin Books,
[21] Wikipedia contributors, Pentagon tiling, Wikipedia, The Free Encyclopedia; https://en.wikipedia.org/wiki/Pentagon_tiling (accessed on 2 August 2017).