Journal Menu
Volume 8, Issue 1 (2017), Pages [1] - [79]
BOUNDEDNESS FOR MULTILINEAR INTEGRAL OPERATORS ON TRIEBEL-LIZORKIN AND LEBESGUE SPACES
[1] S. Chanillo, A note on commutators, Indiana Univ. Math. J. 31 (1982), 7-16.
[2] W. G. Chen, Besov estimates for a class of multilinear singular integrals, Acta Math. Sinica 16 (2000), 613-626.
[3] J. Cohen, A sharp estimate for a multilinear singular integral on Indiana Univ. Math. J. 30 (1981), 693-702.
[4] J. Cohen and J. Gosselin, On multilinear singular integral operators on Studia Math. 72 (1982), 199-223.
[5] J. Cohen and J. Gosselin, A BMO estimate for multilinear singular integral operators, Illinois J. Math. 30 (1986), 445-465.
[6] R. Coifman and Y. Meyer, Wavelets, Calderón-Zygmund and Multilinear Operators,
[7] S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Math. 16 (1978), 263-270.
[8] L. Z. Liu, Triebel-Lizorkin space estimates for multilinear operators of sublinear operators, Proc. Indian Acad. Sci. (Math. Sci.) 113 (2003), 379-393.
[9] L. Z. Liu, The continuity of commutators on Triebel-Lizorkin spaces, Integral Equations and Operator Theory 49 (2004), 65-76.
[10] L. Z. Liu, Boundedness of multilinear operator on Triebel-Lizorkin spaces, Inter J. of Math. and Math. Sci. 5 (2004), 259-272.
[11] L. Z. Liu, Boundedness for multilinear Littlewood-Paley operators on Triebel-Lizorkin spaces, Methods and Applications of Analysis 10(4) (2004), 603-614.
[12] S. Z. Lu, Four Lectures on Real Spaces, World Scientific, River Edge, NI, 1995.
[13] M. Paluszynski, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and
[14] E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals,
[15] A. Torchinsky, The Real Variable Methods in Harmonic Analysis, Pure and Applied Math., 123, Academic Press,
[16] A. Torchinsky and