Journal Menu
Volume 7, Issue 1 (2016) , Pages [1] - [30]
WELL-POSEDNESS AND ASYMPTOTIC BEHAVIOUR OF SOLUTIONS FOR THE MODEL OF STEM CELLS
[1] M. C. Mackey, Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis, Blood 51 (1978), 941-956.
[2] G. Bradford, B. Williams, R. Rossi and I. Bertoncello, Quiescence, cycling, and turnover in the primitive haematopoietic stem cell compatment, Exper. Hematol. 25 (1997), 445-453.
[3] F. J. Burns and I. F. Tannock, On the existence of a phase in the cell cycle, Cell. Tissue Kinet. 19 (1970), 321-334.
[4] O. Arina,
[5] J. Dyson, R. Villella-Bressan and G. F. Webb, Asynchronous exponential growth in an age structured population of proliferating and quienscent cells, Math. Biosci. 177(178) (2002), 73-83.
[6] O. Arino, A. Bertuzzi, A. Ganfolfi,
[7] H. R. Thieme, Balanced exponential growth of operator semigroups, J. Math. Anal. Appl. 223 (1998), 30-49.
[8] Ph. Clément, H. Heijmans, S. Angenent, C. van Duijin and B. de Pagter, One-Parameter Semigroups, North-Holland, Amsterdam, 1987.
[9] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer,
[10] G. Nickel and A. Rhandi, On the essential spectral radius of semigroups generated bu perturbations of Hille-Yosida operators, Tübinger Berichte zur Funktionalanalysis 4 (1994/95), 207-220.
[11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer,
[12] W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, One-Parameter Semigroups of Positive Operators, Springer-Verlag, Berlin, (1986), North-Holland, Amsterdam, 1987.