Journal Menu
Volume 6, Issue 1 (2016), Pages [1] - [87]
REAL HYPERSURFACES OF A COMPLEX PROJECTIVE SPACE SATISFYING CERTAIN CONDITIONS
[1] A. Bejancu and S. Deshmukh, Real hypersurfaces of with non-negative Ricci curvature, Proc. Amer. Math. Soc. 124 (1996), 269-274.
[2] T. E. Cecil and P. J. Ryan, Focal sets and real hyper surfaces in complex projective space, Trans Amer. Math. Soc. 269 (1982), 481-499.
[3] M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulgarian J. Physics 15 (1988), 526-531.
[4] J. T. Cho and U.-Hang Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators, Acta Math. Hungar. 80 (1998), 155-167.
[5] S. Deshmukh, Real hyper surfaces of a complex projective sapce, Proc. Indian Acad. Sci. 121(2) (2011), 171-179.
[6] U. C. De, N. Guha and D. Kamilya, On generalized Ricci-recurrent manifolds, Tensor N. S. 56 (1995), 312-317.
[7] R. Deszcz, On Ricci-pseudosymmetric warped products, Demonstratio Math. 22 (1989), 1053-1065.
[8] T. Hamada, On real hyper surfaces of a complex projective space with second fundamental tensor, Nihonkai Math. J. 2 (1995), 153-163.
[9] T. Hamada, On real hyper surfaces of a complex projective space with recurrent second fundamental tensor, J. Ramanujan Math. Soc. 11 (1996), 103-107.
[10] T. Hamada, On real hyper surfaces of a complex projective space with recurrent Ricci tensor, Glasgow Math. J. 41 (1999), 297-302.
[11] S. K. Hui and Y. Matsuyama, On real hyper surfaces of a complex projective space with pseudo parallel second fundamental tensor, Kobe J. Math. 32 (2015), 53-59.
[12] S. K. Hui and Y. Matsuyama, Pseudo Ricci symmetric real hyper surfaces of a complex projective space, to appear in Bulletin of the Iranian Mathematical Society 42 (2016).
[13] K. Ikuta, Real hyper surfaces of a complex projective space, J. Korean Math. Soc. 36 (1999), 725-736.
[14] Ki, U.-Hang, Real hyper surfaces with parallel Ricci tensor of a complex space form, Tsukuba J. Math. 13 (1989), 73-81.
[15] M. Kimura, Real hyper surfaces of a complex projective space, Bull. Austral. Math. Soc. 33 (1986), 383-387.
[16] M. Kimura, Real hyper surfaces and complex submanifolds in a complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
[17] M. Kimura, Sectional curvatures of holomorphic planes on a real hyper surface in Math. Ann. 27 (1987), 487-497.
[18] M. Kimura, Some real hyper surfaces of a complex projective space, Saitama Math. J. 5 (1987), 1-5; Correction in 10 (1992), 33-34.
[19] M. Kimura and
[20] T. H. Loo, Real hyper surfaces in a complex space form with recurrent Ricci tensor, Glasgow Math. J. 44 (2002), 547-550.
[21] S. Maeda, Real hyper surfaces of complex projective space, Math. Ann. 263 (1983), 473-478.
[22] S. Maeda, Ricci tensors of real hyper surfaces in complex projective space, Proc. Amer. Math. Soc. 122 (1994), 1229-1235.
[23] Y. Maeda, On real hyper surfaces of a complex projective space, J. Math. Soc.
[24] Y. Matsuyama, A characterization of real hyper surfaces in complex projective space, J. Institute Sci. and Eng., Chuo Univ. 2 (1996), 11-13.
[25] Y. Matsuyama, A characterization of real hyper surfaces in complex projective space II, J. Institute Sci. and
[26] Y. Matsuyama, A characterization of real hyper surfaces in complex projective space III, Yokohama Math. J. 46 (1999), 119-126.
[27] R. Niebergall and P. J. Ryan, Real hyper surfaces in complex space forms, Tight and Taut Submanifolds, MSRI Publications 32 (1997), 233-305.
[28] M. Okumura, On some real hyper surfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
[29] E. M. Patterson, Some theorems on Ricci-recurrent spaces, J. London Math. Soc. 27 (1952), 287-295.
[30] J. D. Perez and F. G. Santos, On the Lie derivative of structure Jacobi operator of real hyper surfaces in complex projective space, Publ. Math.
[31] J. D. Perez and F. G. Santos, Real hyper surfaces in complex projective space with recurrent structure Jacobi operator, Diff. Geom. Appl. 26 (2008), 218-223.
[32] J. D. Perez, F. G. Santos and Y. J. Suh, Real hyper surfaces in complex projective space whose structure Jacobi operator is Lie Diff. Geom. Appl. 22 (2005), 181-188.
[33] J. D. Perez, F. G. Santos and Y. J. Suh, Real hyper surfaces in complex projective space whose structure Jacobi operator is D-parallel, Bull. Belgian Math. Soc. Simon Stevin 13 (2006), 459-469.
[34] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying The local version, J. Diff. Geom. 17 (1982), 531-582.
[35] R. Takagi, On homogeneous real hyper surfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
[36] R. Takagi, Real hyper surfaces in complex projective space with constant principal curvatures, J. Math. Soc.
[37] R. Takagi, Real hyper surfaces in complex projective space with constant principal curvatures II, J. Math. Soc.
[38] Q. M. Wang, Real hyper surfaces with constant principal curvatures in complex projective space I, Sci. Sinica Ser. A 26 (1983), 1017-1024.