Journal Menu
Volume 6, Issue 1 (2016), Pages [1] - [87]
GENERALIZED k-JACOBSTHAL AND k-JACOBSTHAL-LUCAS NUMBERS
[1] G. B. Djordjević, Generalized Jacobsthal polynomial, Fibonacci Quart. 38 (2000), 239-243.
[2] G. B. Djordjević, Derivatives sequences of generalized Jacobsthal and Jacobsthal-Lucas plynomials, Fibonacci Quart. 38 (2000), 334-338.
[3] G. B. Djordjević and H. M. Srivastava, Incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers, Math. and Computer Modelling 42 (2005), 1049-1056.
[4] G. B. Djordjević and G. V. Milovanović, Special Classes of Polynomials, Faculty of Technology, Leskovac, 2014.
[5] G. B. Djordjević, Mixed convolutions of the Jacobsthal type, Appl. Math. and Comput. 186 (2007), 646-651.
[6] G. B. Djordjević and S. S. Djordjević, Convolutions of the generalized Morgan-Voyce polynomials, Appl. Math. and Comput. 259 (2015), 106-115.
[7] A. F. Horadam, Jacobsthal representation numbers, Fibonacci Quart. 34 (1996), 40-54.
[8] D. Jhala, K. Sisodiya and G. P. S. Rathore, On some identities for k-Jacobsthal numbers, Int. Journal of Math. Analysis 12 (2013), 551-556.
[9] D. Jhala, G. P. S. Rathore and K. Sisodiya, Some identities and generating function for the k-Jacobsthal-Lucas sequence, Advanced Studies in Contemporary Math. 24(4) (2014), 475-482.
[10] Á. Pintér and H. M. Srivastava, Generating functions of the incomplete Fibonacci and Lucas numbers, Circ. Mat.
[11] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited Chichester), John Wiley and Sons,
[12] E. D. Rainville, Special Functions, The Macmillan Company,