Journal Menu
Volume 3, Issue 2 (2013), Pages [47] - [74]
EXISTENCE OF STATIONARY SOLUTIONS FOR SIR MODEL
[1] N. T. J. Bailey, The Mathematical Theory of Infectious Diseases, 2nd Edition,
[2] N. Becker, The use of epidemic models, Biometrics 35 (1978), 295-305.
[3] E. Beretta and Y. Takeuchi, Global stability of an SIR epidemic model with time delay, J. Math. Biol. 33 (1995), 250-260.
[4] E. Beretta and Y. Takeuchi, Convergence results in SIR epidemic model with varying population sizes, Nonlinear Anal. 28 (1997), 1909-1921.
[5] E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay, Nonlinear Anal. 47 (2001), 4107-4115.
[6] B. M. Bolker and B. T. Grenfell, Chaos and biological complexity in measles dynamics, Proc. Roy. Soc. Lon. B 251 (1993), 75-81.
[7] V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci. 42 (1978), 43-61.
[8] C. Castillo-Chavez, ed., Mathematical and Statistical Approaches to AIDS Epidemiology, Lecture Notes in Biomath. 83,
[9] W. R. Derrick and P. van den Driessche, A disease transmission model in nonconstant population, J. Math. Biol. 31 (1993), 495-512.
[10] P. Rohani Earn, B. M. Bolker and B. T. Grenfell, A simple model for complex dynamical transitions in epidemics, Science 287 (2000), 667-670.
[11] I. EL Berrai, J. Bouyaghroumni and A. Namir, Dissemination of epidemic for SIR model, Applied Mathematical Sciences 7(136) (2013), 6793-6800.
[12] H. W. Hethcote and D. W. Tudor, Integral equation models for endemic infectious diseases, J. Math. Biol. 9 (1980), 37-47.
[13] H. W. Hethcote, M. A. Lewis and P. van den Driessche, An epidemiological model with delay and a nonlinear incidence rate, J. Math. Biol. 27 (1989), 49-64.
[14] H. W. Hethcote and P. van den Driessche, Some epidemiological model with nonlinear incidence, J. Math. Biol. 29 (1991), 271-287.
[15] W. M. Liu, H. W. Hethcote and S. A. Levin, Dynamical behaviour of epidemiological models with nonlinear incidence rates, J. Math. Biol. 25 (1987), 359-380.
[16] W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behaviour of SIRS epidemiological models, J. Math. Biol. 23 (1986), 187-204.
[17] W. Ma, M. Song and Y. Takeuchi, Global stability of an SIR epidemic model with time delay, Appl. Math. Lett. 17 (2004), 1141-1145.
[18] W. Ma, Y. Takeuchi, T. Hara and E. Beretta, Permanence of an SIR epidemic model with distributed time delays, Tohoku Math. J. 54 (2002), 581-591.
[19] A. D’Onofrio, P. Manfredi and
[20] S. Ruan and
[21] M. Song and W. Ma, Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and tie delay, Dynamic of Continuous, Discrete and Impulsive Systems 13 (2006), 199-208.
[22] M. Song, W. Ma and Y. Takeuchi, Permanence of a delayed SIR epidemic model with density dependent birth rate, J. Comput. Appl. Math. 201 (2007), 389-394.
[23] D. Xiao and