Journal Menu
Volume 3, Issue 2 (2013), Pages [47] - [74]
SOME TOEPLITZ TYPE TRANSFORMS RELATED TO GENERAL SINGULAR INTEGRAL OPERATOR
[1] S. Bloom, A commutator theorem and weighted BMO, Trans. Amer. Math. Soc. 292 (1985), 103-122.
[2] D. C. Chang, J. F. Li and J. Xiao, Weighted scale estimates for Calderón-Zygmund type operators, Contemporary Mathematics 446 (2007), 61-70.
[3] S. Chanillo, A note on commutators, Indiana Univ. Math. J. 31 (1982), 7-16.
[4] W. G. Chen, Besov estimates for a class of multilinear singular integrals, Acta Math. Sinica 16 (2000), 613-626.
[5] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635.
[6] J. Garcia-Cuerva, Weighted spaces, Dissert. Math. 162 (1979).
[7] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math., 16, Amsterdam, 1985.
[8] B. Hu and J. Gu, Necessary and sufficient conditions for boundedness of some commutators with weighted Lipschitz spaces, J. Math. Anal. Appl. 340 (2008), 598-605.
[9] S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Math. 16 (1978), 263-270.
[10] S. Krantz and S. Li, Boundedness and compactness of integral operators on spaces of homogeneous type and applications, J. Math. Anal. Appl. 258 (2001), 629-641.
[11] Y. Lin and S. Z. Lu, Toeplitz type operators associated to strongly singular integral operator, Sci. in
[12] Y. Lin, Sharp maximal function estimates for Calderón-Zygmund type operators and commutators, Acta Math. Scientia 31(A) (2011), 206-215.
[13] B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for fractional integral, Trans. Amer. Math. Soc. 192 (1974), 261-274.
[14] M. Paluszynski, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and
[15] C. Pérez, Endpoint estimate for commutators of singular integral operators, J. Func. Anal. 128 (1995), 163-185.
[16] C. Pérez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc. 65 (2002), 672-692.
[17] E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals,
[18] A. Torchinsky, Real Variable Methods in Harmonic Analysis, Pure and Applied Math., 123, Academic Press,