Journal Menu
Volume 3, Issue 1 (2013), Pages [1] - [46]
DEFORMATION OF A CLASS OF NON-COMPACT SPECIAL LAGRANGIAN SUBORBIFOLDS
[1] M. Gross, D. Huybrechts and D. D. Joyce, Calabi-Yau Manifolds and Related Geometries, Springer,
[2] F. R. Harvey and H. B. Lawson, Calibrated geometries, Acta Math. 148 (1982), 47-157.
[3] N. Hitchin, The moduli space of special Lagrangian submanifolds, Dedicated to
[4] J. Jost, Riemannian Geometry and Geometric Analysis, Springer, 1998.
[5] D. D. Joyce, Compact Manifolds with Special Holonomy,
[6] D. D. Joyce, Special Lagrangian submanifolds with isolated conical singularities, I: Regularity, Ann. Global Anal. Geom. 24 (2004), 201-251.
[7] D. D. Joyce, Special Lagrangian submanifolds with conical singularities, II: Moduli spaces, Ann. Global Anal. Geom. 24 (2004), 301-352.
[8] D. D. Joyce, Special Lagrangian submanifolds with isolated conical singularities, III: Desingularization, the unobstructed case, Ann. Global Anal. Geom. 25 (2004), 1-58.
[9] D. D. Joyce, Special Lagrangian submanifolds with isolated conical singularities, IV: Desingularization, obstructions and families, Ann. Global Anal. Geom. 25 (2004), 117-174.
[10] D. D. Joyce, Special Lagrangian submanifolds with isolated conical singularities, V: Survey and applications, J. Differential Geom. 63 (2003), 279-347.
[11] R. Lockhart, Fredholm, Hodge and Liouville theorems on non-compact manifolds, Trans. Amer. Math. Soc. 305 (1987), 1-35.
[12] L. Ma, Moduli space of special Lagrangian in almost Kähler spaces, An. Acad. Brasci. 73(1) (2001), 1-5.
[13] S. P.
[14] R. C. Mclean, Deformation of calibrated submanifolds, Comm. Anal. Geom. 6 (1998), 705-747.
[15] T. Pacini, Deformations of asymptotically conical special Lagrangian submanifolds, Pacific J. Math. 215(1) (2004), 151-181.
[16] W. D. Ruan, Generalized special Lagrangian torus fibration for Calabi-Yau hypersurface in toric variaties I, arxiv: math.DG/0303114.
[17] S. Salur, Deformation of special Lagrangian submanifolds, Comm. Contemp. Math. 2(3) (2000), 365-372.
[18] S. Salur and A. J. Todd, Deformations of asymptotically cylindrical special Lagrangian submanifolds with fixed boundary, arxiv:math.DG/0902.0565.
[19] A. Strominger, S. T. Yau and E. Zaslow, Mirror and symmetry is T-duality, Nucl. Phys. B 479 (1996), 243-259.
[20] A. Strominger, S. T. Yau and E. Zaslow, Mirror and symmetry is T-duality, In:
[21] Y. G. Zhang, Deformation of special Lagrangian suborbifolds, Front. Math. in