Journal Menu
Volume 2, Issue 2 (2013), Pages [61] - [107]
BOUNDEDNESS OF TOEPLITZ TYPE OPERATOR ASSOCIATED TO SINGULAR INTEGRAL OPERATOR WITH VARIABLE CALDERÓN-ZYGMUND KERNELS ON SPACES WITH VARIABLE EXPONENT
[1] A. P. Calderón and A. Zygmund, On singular integrals with variable kernels, Appl. Anal. 7 (1978), 221-238.
[2] R. R. Coifman, R. Rochberg and G. Weiss, Fractorization theorems for Hardy spaces in several variables, Ann. Math. 103 (1976), 611-635.
[3] D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer, The maximal function on variable spaces, Ann. Acad. Fenn. Math. 28 (2003), 223-238.
[4] L. Diening, Maximal function on generalized Lebesgue spaces Math. Inequal. Appl. 7 (2004), 245-253.
[5] L. Diening and M. Ruzicka, Calderón-Zygmund operators on generalized Lebesgue spaces and problems related to fluid dynamics, J. Reine Angew. Math. 563 (2003), 197-220.
[6] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. 116,
[7] A. Y. Karlovich and A. K. Lerner, Commutators of singular integral on generalized spaces with variable exponent, Publ. Mat. 49 (2005), 111-125.
[8] S. Krantz and S. Li, Boundedness and compactness of integral operators on spaces of homogeneous type and applications, J. Math. Anal. Appl. 258 (2001), 629-641.
[9] A. K. Lerner, Weighted norm inequalities for the local sharp maximal function, J. Fourier Anal. Appl. 10 (2004).
[10] Y. Lin and S. Z. Lu, Toeplitz type operators associated to strongly singular integral operator, Sci. in
[11] L. Z. Liu, The continuity for multilinear singular integral operators with variable Calderón-Zygmund kernel on Hardy and Herz spaces, Siberia Electronic Math. Reports 2 (2005), 156-166.
[12] L. Z. Liu, Good l estimate for multilinear singular integral operators with variable Calderón-Zygmund kernel, Kragujevac J. Math. 27 (2005), 19-30.
[13] L. Z. Liu, Weighted estimates of multilinear singular integral operators with variable Calderón-Zygmund kernel for the extreme cases, Vietnam J. Math. 34 (2006), 51-61.
[14] S. Z. Lu and H. X. Mo, Toeplitz type operators on Lebesgue spaces, Acta Math. Scientia 29(B) (2009), 140-150.
[15] S. Z. Lu, D. C. Yang and Z. S. Zhou, Oscillatory singular integral operators with Calderón-Zygmund kernels, Southeast Asian Bull. Math. 23 (1999), 457-470.
[16] A. Nekvinda, Hardy-Littlewood maximal operator on Math. Inequal. Appl. 7 (2004), 255-265.
[17] C. Pérez, Endpoint estimate for commutators of singular integral operators, J. Func. Anal. 128 (1995), 163-185.
[18] C. Pérez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc. 65 (2002), 672-692.
[19] E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals,
[20] H. Xu and L. Z. Liu, Weighted boundedness for multilinear singular integral operator with variable Calderón-Zygmund kernel, African Diaspora J. Math. 6 (2008), 1-12.