Journal Menu
Volume 2, Issue 1 (2013), Pages [1] - [60]
BMO ESTIMATES FOR MULTILINEAR COMMUTATOR OF SINGULAR INTEGRAL OPERATOR WITH VARIABLE CALDERÓN-ZYGMUND KERNEL
[1] A. P. Calderón and A. Zygmund, On singular integrals with variable kernels, Appl. Anal. 7 (1978), 221-238.
[2] J. Alvarez, Guzmá-M. Partida and J. Lakey, Spaces of bounded mean oscillation, Morrey spaces, and Carleson measures, Collect. Math. 51 (2000), 1-47.
[3] R. R. Coifman, R. Rochberg and G. Weiss, Fractorization theorems for Hardy spaces in several variables, Ann. Math. 103 (1976), 611-635.
[4] Z. W. Fu, Y. Lin and S. Z. Lu, BMO estimates for commutator of singular integral operators with rough kernels, Acta Math. Sin. 24 (2008), 373-386.
[5] L. Grafakos, X. Li and D. C. Yang, Bilinear operators on Herz-type Hardy spaces, Trans. Amer. Math. Soc. 350 (1998), 1249-1275.
[6] S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Math. 16 (1978), 263-270.
[7] Y. Komori, Notes on singular integrals on some inhomogeneous Herz spaces, Taiwanese J. Math. 8 (2004), 547-556.
[8] S. Z. Lu, Y. Meng and Q. Wu, Lipschitz estimates for multilinear singular integrals, Acta Math. Sci. 24(B) (2004), 291-300.
[9] S. Z. Lu and Q. Wu, CBMO estimates for commutators and multilinear singular integrals, Math. Nachr. 276 (2004), 75-88.
[10] S. Z. Lu, Q. Wu and D. C. Yang, Boundedness of commutators on Hardy type spaces, Sci. in
[11] S. Z. Lu and D. C. Yang, The central BMO spaces and Littlewood-Paley operators, Approx. Theory Appl. 11 (1995), 72-94.
[12] S. Z. Lu, D. C. Yang and Z. S. Zhou, Oscillatory singular integral operators with Calderón-Zygmund kernels, Southeast Asian Bull. Math. 23 (1999), 457-470.
[13] M. Paluszynski, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and
[14] C. Pérez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc. 65 (2002), 672-692.
[15] H. Xu and L. Z. Liu, Weighted boundedness for multilinear singular integral operator with variable Calderón-Zygmund kernel, African Diaspora J. Math. 6(1) (2008), 1-12.
[16] D. C. Yang, The central Campanato spaces and its applications, Approx. Theory Appl. 10(4) (1994), 85-99.