Journal Menu
Volume 1 Issue 1 (2019), Pages [1] - [110]
SOME MONOTONIC PROPERTIES OF GENERALIZED SIGMOID FUNCTION
[1] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, Journal of Mathematical Analysis and Applications 335(2) (2007), 1294-1308.
DOI: https://doi.org/10.1016/j.jmaa.2007.02.016
[2] P. Barry, Sigmoid Functions and Exponential Riordan Arrays, arXiv:1702.04778v1 [math.CA].
[3] K. Basterretxea, J. M. Tarela and I. del Campo, Approximation of sigmoid function and the derivative for hardware implementation of artificial neurons, IEEE Proceedings Circuits, Devices and Systems, 151(1) (2004), 18-24.
DOI: https://doi.org/10.1049/ip-cds:20030607
[4] O. Centin, F. Temurtas and
DOI: https://doi.org/10.5798/diclemedj.0921.2015.02.0550
[5] Z. Chen and F. Cao, The approximation operators with sigmoidal functions, Computers and Mathematics with Applications 58(4) (2009), 758-765.
DOI: https://doi.org/10.1016/j.camwa.2009.05.001
[6] D. W. Coble and Y.-J. Lee, Use of a Generalized Sigmoid Growth Function to Predict Site Index for Unmanaged Loblolly and Slash Pine Plantations in East Texas, USDA For. Serv. Gen. Tech. Rep. SRS-92, Southern Research Station,
[7] B. Cyganek and K. Socha, Computationally efficient methods of approximations of the s-shape functions for image processing and computer graphics tasks, Image Processing and Communication 16(1-2) (2011), 19-28.
DOI: https://doi.org/10.2478/v10248-012-0002-6
[8] D. L. Elliott, A Better Activation Function for Artificial Neural Networks, The National Science Foundation, Institute for Systems Research,
[9] U. A. Ezeafulukwe, M. Darus and O. Abidemi Fadipe-Joseph, On analytic properties of a sigmoid function, International Journal of Mathematics and Computer Science 13(2) (2018), 171-178.
[10] N. Hassan and
[11] T. Jonas, Sigmoid functions in reliability based management, Periodica Polytechnica Social and Management Sciences 15(2) (2007), 67-72.
DOI: https://doi.org/10.3311/pp.so.2007-2.04
[12] N. Kyurkchiev, A family of recurrence generated sigmoidal functions based on the verhulst logistic function. Some approximation and modelling aspects, Biomath Communications 3(2) (2016), 1-18.
DOI: http://dx.doi.org/10.11145/bmc.2016.12.171
[13] A. A. Minai and R. D. Williams, On the derivatives of the sigmoid, Neural Networks 6(6) (1993), 845-853.
DOI: https://doi.org/10.1016/S0893-6080(05)80129-7
[14] K. Nantomah, On some properties and inequalities of the sigmoid function, available online: RGMIA Res. Rep. Coll. 21 Article 89 (2018), pp. 11.