Journal Menu
Volume 1 Issue 1 (2019), Pages [1] - [110]
SOME UPPER BOUNDS FOR THE INCIDENCE ENERGY OF A CONNECTED GRAPH
[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, MacMillan, London and Elsevier, New York, 1976.
[2] Y. Chen and L. Wang, Sharp bounds for the largest eigenvalue of the signless Laplacian of a graph, Linear Algebra and its Applications 433(5) (2010), 908-913.
DOI: https://doi.org/10.1016/j.laa.2010.04.026
[3] D. Cvetković, Peter Rowlinson and S. Simić, Eigenvalue bounds for the signless Laplacian, Publications de l’Ínstitute Mathématique, Nouvelle série, tome 81(95) (2007), 11-27.
DOI: https://doi.org/10.2298/PIM0795011C
[4] K. Ch. Das and I. Gutman, On incidence energy of graphs, Linear Algebra and its Applications 446 (2014), 329-344.
DOI: https://doi.org/10.1016/j.laa.2013.12.026
[5] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz.
[6] I. Gutman, D. Kiani and M. Mirzakhah, On incidence energy of graphs, MATCH Communications in Mathematical and in Computer Chemistry 62(3) (2009), 573-580.
[7] I. Gutman, D. Kiani, M. Mirzakhah and B. Zhou, On incidence energy of a graph, Linear Algebra and its Applications 431(8) (2009), 1223-1233.
DOI: https://doi.org/10.1016/j.laa.2009.04.019
[8] M. Jooyandeh, D. Kiani and M. Mirzakhah, Incidence energy of a graph, MATCH Communications in Mathematical and in Computer Chemistry 62(3) (2009), 561-572.
[9] E. Kaya and A. Dilek Maden, A generalization of the incidence energy and the Laplacian-energy-like invariants, MATCH Communications in Mathematical and in Computer Chemistry 80(2) (2018), 467-480.
[10] J. S. Li and Y. L. Pan, Upper bounds for the Laplacian graph eigenvalues, Acta Mathematica Sinica, English Series 20(5) (2004), 803-806.
DOI: https://doi.org/10.1007/s10114-004-0332-4
[11] M. Liu and B. Liu, The signless Laplacian spread, Linear Algebra and its Applications 432(2-3) (2010), 505-514.
DOI: https://doi.org/10.1016/j.laa.2009.08.025
[12] H. Liu, M. Lu and F. Tian, On the Laplacian spectral radius of a graph, Linear Algebra and its Applications 376 (2004), 135-141.
DOI: https://doi.org/10.1016/j.laa.2003.06.007
[13] A. Dilek Maden, New bounds on the incidence energy, Randić energy and Randić Estrada index, MATCH Communications in Mathematical and in Computer Chemistry 74(2) (2015), 367-387.
[14] V. Nikiforov, The energy of graphs and matrices, Journal of Mathematical Analysis and Applications 326(2) (2007), 1472-1475.
DOI: https://doi.org/10.1016/j.jmaa.2006.03.072
[15] T. Wang, The largest eigenvalue on the signless Laplacian of a graph, J. Leshan Teachers College 20 (2005), 14-15.
[16] J. Wang, F. Belardo, Q. Huang and B. Borovićanin, On the two largest Q-eigenvalues of graphs, Discrete Mathematics 310(21) (2010), 2858-2866.
DOI: https://doi.org/10.1016/j.disc.2010.06.030
[17] W. Wang and D. Yang, Bounds for incidence energy of some graphs, Journal of Applied Mathematics (2013), Article ID 757542, 7 pages.
DOI: http://dx.doi.org/10.1155/2013/757542
[18] B. Zhou, More upper bounds for the incidence energy, MATCH Communications in Mathematical and in Computer Chemistry 64(1) (2010), 123-128.