Journal Menu
Volume 1 Issue 1 (2019), Pages [1] - [110]
OSCILLATORY PROPERTIES OF HIGHER-ORDER DIFFERENTIAL EQUATIONS WITH DISTRIBUTED DELAY
[1] R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer Acad. Publ., Dordrecht, 2000.
[2] R. P. Agarwal, S. R. Grace and J. V. Manojlovic, Oscillation criteria for certain fourth order nonlinear functional differential equations, Mathematical and Computer Modelling 44(1-2) (2006), 163-187.
DOI: https://doi.org/10.1016/j.mcm.2005.11.015
[3] R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation criteria for certain n-th order differential equations with deviating arguments, Journal of Mathematical Analysis and Applications 262(2) (2001), 601-622.
DOI: https://doi.org/10.1006/jmaa.2001.7571
[4] B. Baculikova, J. Dzurina and J. R. Graef, On the oscillation of higher-order delay differential equations, Journal of Mathematical Sciences 187(4) (2012), 387-400.
DOI: https://doi.org/10.1007/s10958-012-1071-1
[5] O. Bazighifan, Oscillation Criteria for Nonlinear Delay Differential Equation, Lambert Academic
[6] O. Bazighifan, Oscillatory behavior of higher-order delay differential equations, General Letters in Mathematics 2(3) (2017), 105-110.
[7] E. M. Elabbasy, O. Moaaz and O. Bazighifan, Oscillation solution for higher-order delay differential equations, Journal of King Abdulaziz University 29 (2017), 45-52.
[8] E. M. Elabbasy, O. Moaaz and O. Bazighifan, Oscillation of fourth-order advanced differential equations, Journal of Modern Science and Engineering 1(3) (2017), 64-71.
[9] E. M. Elabbasy, O. Moaaz and O. Bazighifan, Oscillation criteria for fourth-order nonlinear differential equations, International Journal of Modern Mathematical Sciences 15(1) (2017), 50-57.
[10] S. R. Grace, R. P. Agarwal and J. R. Graef, Oscillation theorems for fourth order functional differential equations, Journal of Applied Mathematics and Computing 30(1-2) (2009), 75-88.
DOI: https://doi.org/10.1007/s12190-008-0158-9
[11] I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations: With Applications, Clarendon Press,
[12] I. Kiguradze and T. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer Acad. Publ., Dordrecht, 1993.
[13] G. S. Ladde, V. Lakshmikantham and B. G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York, 1987.
[14] T. Li, B. Baculikova, J. Dzurina and C. Zhang, Oscillation of fourth-order neutral differential equations with p-Laplacian like operators, Boundary Value Problems 56 (2014), 41-58.
DOI: https://doi.org/10.1186/1687-2770-2014-56
[15] O. Moaaz, E. M. Elabbasy and O. Bazighifan, On the asymptotic behavior of fourth-order functional differential equations, Advances in Difference Equations 261 (2017), 1.13.
DOI: https://doi.org/10.1186/s13662-017-1312-1
[16] O. Moaaz, Oscillation Properties of Some Differential Equations, Lambert Academic
[17] C. Tunc and O. Bazighifan, Some new oscillation criteria for fourth-order neutral differential equations with distributed delay, Electronic Journal of Mathematical Analysis and Applications 7(1) (2019), 235.241.
[18] C. G. Philos, On the existence of nonoscillatory solutions tending to zero at ¥ for differential equations with positive delay, Archiv der Mathematik (
DOI: https://doi.org/10.1007/BF01223686
[19] C. Zhang, R. P. Agarwal, M. Bohner and T. Li, New results for oscillatory behavior of even-order half-linear delay differential equations, Applied Mathematics Letters 26(2) (2013), 179-183.
DOI: https://doi.org/10.1016/j.aml.2012.08.004
[20] C. Zhang, T. Li, B. Sun and
DOI: https://doi.org/10.1016/j.aml.2011.04.015
[21] C. Zhang, T. Li and S. H. Saker, Oscillation of fourth-order delay differential equations, Journal of Mathematical Sciences 201(3) (2014), 296-309.