Journal Menu
Volume 1 Issue 1 (2019), Pages [1] - [110]
POWER GEOMETRY AND EXPANSIONS OF SOLUTIONS TO THE PAINLEVÉ EQUATIONS
[1] A. D. Bruno, Asymptotics behaviour and expansions of solutions to an ordinary differential equation, Russian Mathem. Surveys 59(3) (2004), 429-480 (in English).
DOI: https://doi.org/10.1070/RM2004v059n03ABEH000736
[2] A. D. Bruno, Complicated expansions of solutions to an ordinary differential equation, Doklady Mathematics 73(1) (2006), 117-120 (in English).
DOI: https://doi.org/10.1134/S1064562406010327
[3] A. D. Bruno, Exotic expansions of solutions to an ordinary differential equation, Doklady Mathematics 76(2) (2007), 729-733 (in English).
DOI: https://doi.org/10.1134/S1064562407050237
[4] A. D. Bruno, On complicated expansions of solutions to ODE, Keldysh Institute, Preprints No. 15.
URL: http://library.keldysh.ru/preprint.asp?id=2011-15
[5] A. D. Bruno and A. V. Parusnikova, Local expansions of solutions to the fifth Painlevé equation, Doklady Mathematics 83(3) (2011), 348-352 (in English).
DOI: https://doi.org/10.1134/S1064562411030276
[6] A. D. Bruno and I. V. Goryuchkina, Asymptotic expansions of solutions of the sixth Painlevé equation, Trans. Moscow Math. Soc. 71 (2010), 1-104 (in English).
DOI: https://doi.org/10.1090/S0077-1554-2010-00186-0
[7] Michiel Hazewinkel, Ed., Multinomial Coefficient, Encyclopedia of Mathematics, Springer, 2001.
http://www.encyclopediaofmath.org/index.php?title=p/m065320
[8] A. D. Bruno, Calculation of complicated asymptotic expansions of solutions to the Painlevé equations, Keldysh Institute Preprints, No. 55, Moscow (2017), 27 (in Russian).
DOI: https://doi.org/10.20948/prepr-2017-55
[9] A. D. Bruno, Calculation of exotic expansions of solutions to the third Painlevé equation, Keldysh Institute Preprints, No. 96, Moscow (2017), 22 (in Russian).
DOI: https://doi.org/10.20948/prepr-2017-96
[10] A. D. Bruno, Complicated and exotic expansions of solutions to the fifth Painlevé equation, Keldysh Institute Preprints, No. 107, Moscow, 2017 (in Russian).