Journal Menu
Volume 1 Issue 1 (2019), Pages [1] - [110]
DYNAMICAL SYMMETRIES, COHERENT STATES AND NONCOMMUTATIVE STRUCTURES: GEOMETRICAL QUANTIZATION ANALYSIS
[1] A. P. Isaev, Quantum group covariant noncommutative geometry, J. Math. Phys. 35(12) (1994), 6784.
DOI: https://doi.org/10.1063/1.530643
[2] P. Aschieri, L. Castellani and A. P. Isaev, Discretized Yang-Mills and born-infeld actions on finite group geometries, Int. J. Mod. Phys. A 18(20) (2003), 3555.
DOI: https://doi.org/10.1142/S0217751X03015209
[3] M. Blagojevic, Gravitation and Gauge Symmetries,
[4] K. Hayashi and T. Shirafuji, Gravity from Poincaré gauge theory of the fundamental particles, VII: - The axial-vector model, Prog. Theor. Phys. 66(6) (1981), 2258-2273.
DOI: https://doi.org/10.1143/PTP.66.2258
[5] A. B. Borisov, The unitary representations of the general covariant group algebra, J. Phys. A: Math. Gen. 11(6) (1978), 1057.
DOI: https://doi.org/10.1088/0305-4470/11/6/009
[6] R. Utiyama, Invariant theoretical interpretation of interaction, Phys. Rev. 101(5) (1956), 1597.
DOI: https://doi.org/10.1103/PhysRev.101.1597
[7] S. Capozziello and M. De Laurentis, Extended theories of gravity, Phys. Rept. 509(4-5) (2011), 167-321.
DOI: https://doi.org/10.1016/j.physrep.2011.09.003
[8] F. W. Hehl, J. D. McCrea, E. W. Mielke and Y. Ne’eman, Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance, Phys. Rept. 258(1-2) (1995), 1-171.
DOI: https://doi.org/10.1016/0370-1573(94)00111-F
[9] D. Ivanenko and G. Sardanashvily, The gauge treatment of gravity, Phys. Rept. 94(1) (1983), 1-45.
DOI: https://doi.org/10.1016/0370-1573(83)90046-7
[10] Y. N. Obukhov, Poincaré gauge gravity: selected topics, Int. J. Geom. Methods Mod. Phys. 3(1) (2006), 95-138.
DOI: https://doi.org/10.1142/S021988780600103X
[11] Y. Ne’eman and T. Regge, Gauge theory of gravity and supergravity on a group manifold, Rivista
DOI: https://doi.org/10.1007/BF02724472
[12] S. Gotzes and A. C. Hirshfeld, A geometric formulation of the SO(3, 2) theory of gravity, Annals Phys. 203(2) (1990), 410-418.
DOI: https://doi.org/10.1016/0003-4916(90)90176-O
[13] T. Shirafuji and M. Suzuki, Gauge theory of gravitation: A unified formulation of poincaré and (anti-)de sitter gauge theories, Prog. Theor. Phys. 80(4) (1988), 711-730.
DOI: https://doi.org/10.1143/PTP.80.711
[14] E. A. Ivanov and J. Niederle, Gauge formulation of gravitation theories, I: The Poincaré, de Sitter, and conformal cases, Phys. Rev. D 25(4) (1982), 976.
DOI: https://doi.org/10.1103/PhysRevD.25.976
[15] E. A. Ivanov and J. Niederle, Gauge formulation of gravitation theories, II: The special conformal case, Phys. Rev. D 25(4) (1982), 988.
DOI: https://doi.org/10.1103/PhysRevD.25.988
[16] M. Leclerc, The Higgs sector of gravitational gauge theories, Annals Phys. 321(3) (2006), 708-743.
DOI: https://doi.org/10.1016/j.aop.2005.08.009
[17] K. S. Stelle and P. C. West, Spontaneously broken de sitter symmetry and the gravitational holonomy group, Phys. Rev. D 21(6) (1980), 1466.
DOI: https://doi.org/10.1103/PhysRevD.21.1466
[18] A. A. Tseytlin, Poincaré and de Sitter gauge theories of gravity with propagating torsion, Phys. Rev. D 26(12) (1982), 3327.
DOI: https://doi.org/10.1103/PhysRevD.26.3327
[19] E. A. Lord and P. Goswami, Gauge theory of a group of diffeomorphisms, I: General principles, J. Math. Phys. 27(9) (1986), 2415.
DOI: https://doi.org/10.1063/1.526980
[20] E. A. Lord, Gauge theory of a group of diffeomorphisms, II: The conformal and de Sitter groups, J. Math. Phys. 27(12) (1986), 3051.
DOI: https://doi.org/10.1063/1.527234
[21] M. Greenberg, Lectures on Algebraic Topology, W. A. Benjamin, Inc.,
[22] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, John Wiley & Sons,
[23] G. Sardanashvily, Classical gauge gravitation theory, Int. J. Geom. Methods Mod. Phys. 8(8) (2011), 1869.
DOI: https://doi.org/10.1142/S0219887811005993
[24] G. Giachetta, L. Mangiarotti and G. Sardanashvily, Advanced Classical Field Theory, World Scientific, 2009.
[25] I. Kirsch, Higgs mechanism for gravity, Phys. Rev. D 72(2) (2005), 024001.
DOI: https://doi.org/10.1103/PhysRevD.72.024001
[26] M. Keyl, About the geometric structure of symmetry-breaking, J. Math. Phys. 32(4) (1991), 1065.
DOI: https://doi.org/10.1063/1.529385
[27] L. Nikolova and V. A. Rizov, Geometrical approach to the reduction of gauge theories with spontaneously broken symmetry, Rept. Math. Phys. 20(3) (1984), 287-301.
DOI: https://doi.org/10.1016/0034-4877(84)90039-9
[28] G. Sardanashvily, On the geometry of spontaneous symmetry breaking, J. Math. Phys. 33(4) (1992), 1546.
DOI: https://doi.org/10.1063/1.529679
[29] G. Sardanashvily, Geometry of classical Higgs fields, Int. J. Geom. Methods Mod. Phys. 3(1) (2006), 139-148.
DOI: https://doi.org/10.1142/S0219887806001065
[30] G. Sardanashvily, Preface: Mathematical models of spontaneous symmetry breaking, Int. J. Geom. Methods Mod. Phys. 5(2) (2008), 5-16.
DOI: https://doi.org/10.1142/S0219887808002746
[31] G. Sardanashvily, Classical Higgs fields, Theor. Math. Phys. 181(3) (2014), 1599-1611.
DOI: https://doi.org/10.1007/s11232-014-0238-y
[32] A. Trautman, Differential geometry for physicists,
[33] H. B. Lawson and M. L. Michelsohn, Spin Geometry,
[34] G. Sardanashvily, Gravity as a goldstone field in the Lorentz gauge theory, Phys. Lett. A 75(4) (1980), 257-258.
DOI: https://doi.org/10.1016/0375-9601(80)90555-1
[35] G. A. Sardanashvily and O. Zakharov, Gauge Gravitation Theory, World Scientific,
[36] S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambr. Univ. Press,
[37] G. Sardanashvily, What are the Poincaré gauge fields?, Czech. J. Phys. B 33(6) (1983), 610-615.
DOI: https://doi.org/10.1007/BF01832147
[38] D. V. Volkov and V. A. Soroka, Higgs effect for goldstone particles with spin 1/2, JETP Lett. 18(8) (1973), 312. [Pisma Zh. Eksp. Teor. Fiz. 18 (1973), 529].
[39] V. P. Akulov, D. V. Volkov and V. A. Soroka, Gauge fields on superspaces with different holonomy groups, JETP Lett. 22(7) (1975), 187. [Pisma Zh. Eksp. Teor. Fiz. 22 (1975), 396].
[40] P. Nath and R. Arnowitt, Generalized super-gauge symmetry as a new framework for unified gauge theories, Phys. Lett. B 56(2) (1975), 177-180.
DOI: https://doi.org/10.1016/0370-2693(75)90297-X
[41] S. W. MacDowell and F. Mansouri, Unified geometric theory of gravity and supergravity, Phys. Rev. Lett. 38(23) (1977), 739 Erratum: [Phys. Rev. Lett. 38 (1977), 1376].
[42] D. V. Volkov and A. I. Pashnev, Supersymmetric lagrangian for particles in proper time, Theor. Math. Phys. 44(3) (1980), 770-773. [Teor. Mat. Fiz. 44 (1980), 321].
DOI: https://doi.org/10.1007/BF01029041
[43] E. Inonu and E. P. Wigner, On the contraction of groups and their representations, Proc. Nat. Acad. Sci. USA 39(6) (1953), 510-524.
[44] D. J. Cirilo-Lombardo, Non-compact groups, coherent states, relativistic wave equations and the harmonic oscillator, Found. Phys. 37(6) (2007), 919-950. [Found. Phys. 37(8) (2007), 1149-1180] [Found. Phys. 38 (2008), 99].
[45] J. A. de Azcarraga and J. Lukierski, Supersymmetric particle model with additional bosonic coordinates, Z. Phys. C - Particles and Fields 30(2) (1986), 221-227.
DOI: https://doi.org/10.1007/BF01575429
[46] D. J. Cirilo-Lombardo and A. Arbuzov, Work in Progress.
[47] V. I. Ogievetsky, Infinite-dimensional algebra of general covariance group as the closure of finite-dimensional algebras of conformal and linear groups, Lettere al Nuovo Cimento 8(17) (1973), 988-990.
DOI: https://doi.org/10.1007/BF02891914
[48] D. V. Volkov and V. P. Akulov, Is the neutrino a goldstone particle?, Phys. Lett. B 46(1) (1973), 109-110.
DOI: https://doi.org/10.1016/0370-2693(73)90490-5
[49] S. Capozziello, D. J. Cirilo-Lombardo and M. De Laurentis, The affine structure of gravitational theories: Symplectic groups and geometry, Int. J. Geom. Methods Mod. Phys. 11(10) (2014), 1450081.
DOI: https://doi.org/10.1142/S0219887814500819
[50] A. B. Borisov and V. I. Ogievetsky, Theory of dynamical affine and conformal symmetries as gravity theory of the gravitational field, Theor. Math. Phys. 21(3) (1974), 1179-1188. [Teor. Mat. Fiz.21 (1974), 329].
DOI: https://doi.org/10.1007/BF01038096
[51] D. J. Cirilo-Lombardo, Non-compact groups, coherent states, relativistic wave equations and the harmonic oscillator II: Physical and geometrical considerations, Found. Phys. 39(4) (2009), 373-396.
DOI: https://doi.org/10.1007/s10701-009-9289-6
[52] D. J. Cirilo-Lombardo, The geometrical properties of Riemannian superspaces, exact solutions and the mechanism of localization, Phys. Lett. B 661(2-3) (2008), 186-191.
DOI: https://doi.org/10.1016/j.physletb.2008.02.003
[53] D. J. Cirilo-Lombardo, Algebraic structures, physics and geometry from a unified field theoretical framework, Int. J. Theor. Phys. 54(10) (2015), 3713-3727.
DOI: https://doi.org/10.1007/s10773-015-2609-z
[54] W. Ambrose and I. M. Singer, A theorem on holonomy, Trans. Amer. Math. Soc. 75(3) (1953), 428-443.
DOI: https://doi.org/10.1090/S0002-9947-1953-0063739-1
[55] B. Kostant, in: Lecture Notes in Mathematics vol. 570, 177; (K. Bleuler and A. Reetz, Editors), Proc. Conf. on Diff. Geom. Meth. in Math. Phys. Bonn 1975.
[56] M. Rothstein, in: Lecture notes in Physics 375, 331 (C. Bartocci, U. Bruzzo and R. Cianci, Editors), Proc. Conf. on Diff. Geom. Meth. in Math. Phys.,
[57] J. O. Winnberg, Superfields as an extension of the spin representation of the orthogonal group, J. Math. Phys. 18(4) (1977), 625; M. Pavsic J. Phys. Conf. Ser. 33 (2006), 422-427.
DOI: https://doi.org/10.1063/1.523344
[58] M. Pavsic, A theory of quantized fields based on orthogonal and symplectic Clifford algebras, Adv. Appl. Clifford Algebras 22(2) (2012), 449-481.
DOI: https://doi.org/10.1007/s00006-011-0314-4
[59] A. A. Albert, Structure of algebras, Amer. Math. Soc.,
[60] N. A. Salingaros and G. P. Wene, The Clifford algebra of differential forms, Acta Applicandae Mathematicae 4(2-3) (1985), 271-292.
DOI: https://doi.org/10.1007/BF00052466
[61] M. Pavsic, On the unification of interactions by Clifford algebra, Adv. Appl. Clifford Algebras 20(3-4) (2010), 781-801; Phys. Lett. B 692 (2010), 212-217.
[62] D. J. Cirilo-Lombardo, Geometrical properties of Riemannian superspaces, observables and physical states, Eur. Phys. J. C 72(7) (2012), 2079.
DOI: https://doi.org/10.1140/epjc/s10052-012-2079-x
[63] J. Mickelsson, Boundary currents and Hamiltonian quantization of fermions in background fields, Physics Letters B 456(2-4) (1999), 124-128.
DOI: https://doi.org/10.1016/S0370-2693(99)00505-5
[64] A. B. Arbuzov and D. J. Cirilo-Lombardo, Dynamical symmetries, coherent states and nonlinear realizations: The SO(2, 4) case, Int. J. Geom. Methods Mod. Phys. 15(1) (2018), 1850005.
DOI: https://doi.org/10.1142/S0219887818500056
[65] S. Agyo, C. Lei and A. Vourdas, The groupoid of bifractional transformations, Journal of Mathematical Physics 58(5) (2017), 052103.