Journal Menu
Pages : [37] - [47]
Received : September 17, 2019
Communicated by : Professor Francisco Bulnes
Abstract
Let 
 and M be a finitely generated 
 S-module. We say that M is a Stanley Cohen-Macaulay module if 
  where 
 Let 
 be a simplicial complex on the vertex set 
 with 
 Let F be an arbitrary face of 
 and 
 be a new vertex. A cone from 
 over F, denoted by 
 is the simplex on the vertex set 
 Set 
 and 
 It is shown that if 
 is a Stanley Cohen-Macaulay module then Stanley’s conjecture holds for 
 Moreover, we show that for a monomial ideal I of S if 
 is a regular element on 
 for some 
 then I is a Stanley Cohen-Macaulay ideal if and only if 
 is a Stanley Cohen-Macaulay ideal.