Journal Menu
Volume 1, Issue 1 (2020), Pages [1] - [141]
EMPIRICAL ORTHOGONAL FUNCTION (EOF) ANALYSIS OF PRECIPITATION OVER
[1] D. Eslinger, James J. O’Brien and R. Iverson, Empirical orthogonal function analysis of cloud-containing coastal zone color scanner images of northeastern North American coastal waters Journal of Geophysical Research 94(10) (1989), 884-910.
[2] W. Freiberger and U. Grenander, On the formulation of statistical meteorology, Revue de I’Institute International de Statistique (1965), 59-86.
[3] T. C. Gallaudet and J. J. Simpson, An empirical orthogonal function analysis of remotely sensed sea surface temperature variability and its relation to interior oceanic processes off Baja California Remote Sensing of Environment 47(3) (1994), 375-389.
[4] J. Hansen, R. Ruedy, M. Sato and K. Lo, Global surface temperature change, Reviews of Geophysics 48(4) (2010).
[5] G. S. Lagerloef and R. L. Bernstein, Empirical orthogonal function analysis of advanced very high resolution radiometer surface temperature patterns in Santa Barbara Channel, Journal of Geophysical Research: Oceans 93(C6) (1988), 6863-6873.
[6] M. Loeve, Probability theory, Vol. ii, Graduate Texts in Mathematics 46 (1978), 0-387.
[7] E. N. Lorenz, Empirical orthogonal functions and statistical weather prediction, (1956).
[8] W. H. Nam, E. M. Hong and G. A. Baigorria, How climate change has affected the spatio-temporal patterns of precipitation and temperature at various time scales in North Korea, International Journal of Climatology 36(2) (2016), 722-734.
[9] G. R. North, T. L. Bell, R. F. Cahalan and F. J. Moeng, Sampling errors in the estimation of empirical orthogonal functions, Monthly Weather Review 110(7) (1982), 699-706.
[10] K. Owusu and P. R. Waylen, The changing rainy season climatology of mid-Ghana, Theoretical and Applied Climatology 112 (2013), 419-430.
[11] K. Owusu, P. Waylen and Y. Qiu, Changing rainfall inputs in the Volta basin: Implications for water sharing in