Journal Menu
Volume 1, Issue 1 (2020), Pages [1] - [141]
ARCSINE CUMULATIVE SUM CONTROL CHART
[1] R. W. Amin, M. R. Reynolds Jr. and S. T. Baker, Nonparametric quality control charts based on the sign statistics, Communications in Statistics-Theory and Methods 24 (1995), 1597-1624.
[2] S. W. Cheng and K. Thaga, Max-CUSUM chart, Frontiers in Statistical Quality Control 9 (2010), 85-98.
[3] M. A. A. Cox, Toward the implementation of a universal control chart and estimation of its average run length using a spreadsheet, Quality Engineering 11 (1999), 511-536.
[4] S. Chakraborti, P. Van der Laan and M. A. Van der Weil, Nonparametric control charts: An overview and some results, Journal of Quality Technology 33 (2001), 304-315.
[5] S. Chakraborti and S. A. Eryilmaz, A non-parametric Shewhart type sign rank control chart based on runs, Communication in Statistics: Simulation and Computation 36 (2007), 335-356.
[6] S. Chakraborti and M. Graham, Nonparametric Control Charts, Encyclopedia of Quality and Reliability, John Wiley & Sons, Inc.,
[7] B. L. MacCarthy and T. A. Wasusri, A review of nonstandard applications of statistical process control (SPC) charts, International Journal of Quality & Reliability Management 19(3) (2002), 295-320.
[8] F. Mosteller and C. Youtz, Tables of the Freeman-Tukey transformations for the binomial and Poisson distributions, Biometrika 48(3-4) (1961), 433-440.
[9] Y. Su-Fen, C. Tsung-Chi, H. Ying-Chao and S. W. Cheng, A new chart for monitoring service process mean, Quality and Reliability Engineering International 28(4) (2011), 377-386.
[10] F. Tsung, Y. Li and M. Jin, Statistical process control for multistage manufacturing and service operations: A review and some extensions, International Journal of Service Operations and Informatics 3 (2008), 191-204.