Journal Menu
Volume 1, Issue 1 (2020), Pages [1] - [141]
THE RUNNING INTERVAL SMOOTHER: A CONFIDENCE BAND HAVING SOME SPECIFIED SIMULTANEOUS PROBABILITY COVERAGE
[1] J. V. Bradley, Robustness? British Journal of Mathematical and Statistical Psychology 31 (1978), 144-152.
[2] F. Clark, J. Jackson, M. Carlson, C.-P. Chou, B. J. Cherry, M. Jordan-Marsh, B. G. Knight, D. Mandel, J. Blanchard, D. A. Granger, R. R. Wilcox, M. Y. Lai, B. White, J. Hay, C. Lam, A. Marterella and S. P. Azen, Effectiveness of a lifestyle intervention in promoting the well-being of independently living older people: Results of the Well Elderly 2 randomise controlled trial, Journal of Epidemiology and Community Health 66 (2012), 782-790.
DOI: http://dx.doi.org/10.1136/jech.2009.099754
[3] S. Efromovich, Nonparametric Curve Estimation: Methods, Theory and Applications,
[4] R. L. Eubank, Nonparametric Regression and Spline Smoothing, Marcel Dekker,
[5] J. Fan and I. Gijbels, Local Polynomial Modeling and its Applications, CRC Press,
[6] J. Fox, Multiple and Generalized Nonparametric Regression, Sage, Thousands Oaks, CA, 2001.
[7] P. J. Green and B. W. Silverman, Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach, CRC Press,
[8] L. Györfi, M. Kohler, A. Krzyzk and H. Walk, A Distribution-Free Theory of Nonparametric Regression, Springer Verlag, New York, 2002.
[9] P. Hall and S. J. Sheather, On the distribution of a studentized quantile, Journal of the Royal Statistical Society B 50 (1988), 380-391.
[10] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw and W. A. Stahel, Robust Statistics, Wiley,
[11] W. Hardle, Applied Nonparametric Regression, Econometric Society Monographs No. 19, Cambridge University Press, Cambridge, UK, 1990.
[12] F. E. Harrell and C. E. Davis, A new distribution-free quantile estimator, Biometrika 69 (1982), 635-640.
[13] T. J. Hastie and R. J. Tibshirani, Generalized Additive Models, Chapman and Hall,
[14] T. P. Hettmansperger and J. W. McKean, Robust Nonparametric Statistical Methods,
[15] T. P. Hettmansperger and S. J. Sheather, Confidence intervals based on interpolated order statistics, Statistics and Probability Letters 4 (1986), 75-79.
[16] D. C. Hoaglin, Summarizing shape numerically: The g-and-h distribution, In D. C. Hoaglin, F. Mosteller & J. W. Tukey (Eds.), Exploring Data Tables Trends and Shapes, Wiley,
[17] S. J. Huber and E. Ronchetti, Robust Statistics, 2nd Edition, Wiley,
[18] S. J. Sheather and J. W. McKean, A comparison of testing and confidence intervals for the median, Statistical Probability Letters 6 (1987), 31-36.
[19] R. G. Staudte and S. J. Sheather, Robust Estimation and Testing, Wiley,
[20] J. W. Tukey and D. H. McLaughlin, Less vulnerable confidence and significance procedures for location based on a single sample: Trimming/Winsorization 1, Sankhya A 25 (1963), 331-352.
[21] R. R. Wilcox, Introduction to Robust Estimation and Hypothesis Testing, 4th Edition, Academic Press,