Journal Menu
Volume 14, Issue 1 (2025) Under Process, Pages [1] - [9]
A CONTRIBUTION TO A SPECIFIC CONVEX INTEGRAL INEQUALITY
[1] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54 (1948), 439-460.
DOI: https://doi.org/10.1090/S0002-9904-1948-08994-7
[2] R. Bellman, On the approximation of curves by line segments using dynamic programming, Commun. ACM 4(6) (1961), 284.
[3] C. Chesneau, On several new integral convex theorems, Adv. Math. Sci. J. 14(4) (2025), 391-404.
DOI: https://doi.org/10.37418/amsj.14.4.4
[4] C. Chesneau, Examining new convex integral inequalities, Earthline J. Math. Sci. 15(6) (2025), 1043-1049.
DOI: https://doi.org/10.34198/ejms.15625.10431049
[5] C. Chesneau, On two new theorems on convex integral inequalities, Adv. Math. Sci. J. 15(1) (2026), 67-75.
DOI: https://doi.org/10.37418/amsj.15.1.5
[6] S. S.Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11(5) (1998), 91-95.
DOI: https://doi.org/10.1016/S0893-9659(98)00086-X
[7] J. Hadamard, Étude sur les propriétés des fonctions entiéres et en particulier d’une fonction considérée par Riemann, J. Math. Pures Appl. 58 (1893), 171-215.
[8] C. Hermite, Sur deux limites d’une intégrale définie, Mathesis 3 (1883), 82.
[9] M. M. Iddrisu, C. A. Okpoti and K. A. Gbolagade, A proof of Jensen’s inequality through a new Steffensen’s inequality, Adv. Inequal. Appl. 2014 (2014), 1-7.
[10] M. M. Iddrisu, C. A. Okpoti and K. A. Gbolagade, Geometrical proof of new Steffensen’s inequality and Applications, Adv. Inequal. Appl., 2014 (2014), 1-10.
[11] J. L. W. V. Jensen,
[12] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math. 30(1) (1906), 175-193.
[13] D. S. Mitrinović, Analytic Inequalities,
[14] D. S. Mitrinović, J. E. Pecarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht/Boston/London, 1993.
[15] C. P. Niculescu, Convexity according to the geometric mean, Math. Ineq. Appl. 3(2) (2000), 155-167.
DOI: https://dx.doi.org/10.7153/mia-03-19
[16] A. W. Roberts and P. E. Varberg, Convex Functions, Academic Press, 1973.