Journal Menu
Volume 12, Issue 1 (2024), Pages [1] - [52]
A GENERALIZATION OF THE DU INTEGRAL INEQUALITY
[1] P. S. Bullen, A Dictionary of Inequalities, Pitman Monographs and Surveys in Pure and Applied Mathematics, 97, Longman, Harlow, 1998.
[2] C. Chesneau, Introduction to the Special Issue in Axioms Titled Current Research on Mathematical Inequalities. Axioms 12(2) (2023), 109.
DOI: https://doi.org/10.3390/axioms12020109
[3] Z. Cvetkovski, Inequalities: Theorems, Techniques and Selected Problems, SpringerLink: Springer
DOI: https://doi.org/10.1007/978-3-642-23792-8
[4] W.-S. Du, New integral inequalities and generalizations of Huang-Du's integral inequality, Applied Mathematical Sciences 17(6) (2023), 265-272.
DOI: https://doi.org/10.12988/ams.2023.917393
[5] I. S. Gradshteyn and
[6] H. Huang and W.-S. Du, On a new integral inequality: Generalizations and applications, Axioms 11(9) (2022), 458.
DOI: https://doi.org/10.3390/axioms11090458
[7] IMC, 29th International Mathematics Competition for University Students, Blagoevgrad, Bulgaria on 1-7 August 2022, https://www.imc-math.org.uk (accessed on 28 July 2024).
[8] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, 2nd Edn., Wiley, New York, USA, 1995.
[9] D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Classical and New Inequalities in Analysis; Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993.
DOI: https://doi.org/10.1007/978-94-017-1043-5
[10] B. J. Venkatachala, Inequalities - An Approach Through Problems, Springer,
DOI: https://doi.org/10.1007/978-981-10-8732-5