Journal Menu
Volume 11, Issue 2 (2023), Pages [61] - [130]
INCORRECT CONCLUSIONS DRAWN FOR PLAUSIBLE LOOKING DIAGRAMS
[1] M. Gr. Voskoglou, Problem solving in mathematics education: recent trends and development, Quaderni di Ricerca in Didattica 18 (2008), 22-28.
[2] T. Tambychik and T. Subahan Mohd Meerah, Students’ difficulties in mathematics problem-solving: What do they say?, Procedia Social and Behavioral Sciences 8 (2010), 142-151.
DOI: https://doi.org/10.1016/j.sbspro.2010.12.020
[3] P. Biccard, Productive struggle in mathematical modelling, The Mathematics Enthusiast 21(1) (2024); Article 8.
DOI: https://doi.org/10.54870/1551-3440.1620
[4] A. Charalambopoulos, G. Dassios, I. D. Fotiadis and V. C. Masalas, Dynamic characteristics of the human skull-brain system, Mathematical and Computer Modelling 27(2) (1998), 81-101.
DOI: https://doi.org/10.1016/S0895-7177(97)00261-6
[5] G. Fragoyannis, F. Kariotou and P. Vafeas, On the avascular ellipsoidal tumour growth model within a nutritive environment, European Journal of Applied Mathematics 31(1) (2020), 111-142.
DOI: https://doi.org/10.1017/S0956792518000499
[6] D. Gintides and L. Mindrinos, The inverse electromagnetic scattering problem by a penetrable cylinder at oblique incidence, Applicable Analysis 98(4) (2019), 781-798.
DOI: https://doi.org/10.1080/00036811.2017.1402891
[7] S. A. Fokas, N. Dikaios and A. G. Kastis, Predictive mathematical models for the number of individuals infected with COVID-19, medRxiv (2020).
DOI: https://doi.org/10.1101/2020.05.02.20088591
[8] G. Dassios, M. Hadjinicolaou and E. Protopapas, Blood plasma flow past a red blood cell: Mathematical modelling and analytical treatment, Mathematical Methods in the Applied Sciences 35(13) (2012), 1547-1563.
DOI: https://doi.org/10.1002/mma.2540
[9] M. Hadjinicolaou and E. Protopapas, Mathematical study of the perturbation of magnetic fields caused by erythrocytes, Advances in Experimental Medicine and Biology 1424 (2023), 281-288.
DOI: https://doi.org/10.1007/978-3-031-31982-2_32
[10] B. Bunch, Mathematical Fallacies and Paradoxes,
[11] M. Clark, Paradoxes from A to Z, Routledge, Taylor and Francis Group, 2012.
[12] S. Klymchuk and S. Staples, Paradoxes and Sophisms in Calculus, Mathematical Association of
[13] P. E. Northrop, Riddles in Mathematics, A Book of Paradoxes, D. Van Nostrand Company Inc., 1944.
[14] M. Kondratieva, Understanding mathematics through resolution of paradoxes, Mediterranean Journal for Research in Mathematics Education 6(1/2) (2009), 127-138.
[15] A. Dönmez, Some paradoxes in Mathematics, Dogus University Journal 1(1) (2000), 79-87.
[16] I. Kleiner and N. Movshovitz-Hadar, The role of paradoxes in the evolution of mathematics, American Mathematical Monthly 101(10) (1994), 963-974.
DOI: https://doi.org/10.2307/2975163
[17] J. L. Bell, Oppositions and paradoxes in mathematics and philosophy, Axiomathes 15(2) (2005), 165-180.
DOI: https://doi.org/10.1007/s10516-004-6675-8
[18] M. Kondratieva and L. Bergsten, Secondary school mathematics students exploring the connectedness of mathematics: The case of the parabola and its tangent in a dynamic geometry environment, The Mathematics Enthusiast 18(1) (2021); Article 13.
DOI: https://doi.org/10.54870/1551-3440.1520
[19] H. Von Koch, Une méthode géométrique élémentaire pour l’étude de certaines questions de la théorie des courbes planes, Acta Mathematica 30 (1906), 145-174.
DOI: https://doi.org/10.1007/BF02418570
[20] F. Cajori, A History of Mathematics,
[21] B. Mandelbrot, The fractal geometry of nature, American Journal of Physics 51(3) (1983), 286-287.