Journal Menu
Volume 11, Issue 2 (2023), Pages [61] - [130]
POINTS ACCESSIBLE IN AVERAGE BY REARRANGEMENT OF SEQUENCES II
[1] F. Bagemihl and P. Erdős, Rearrangements of series, Acta Mathematica 92 (1954), 35-53.
DOI: https://doi.org/10.1007/BF02392700
[2] P. S. Bullen, Handbook of Means and their Inequalities, Volume 260, Kluwer Academic Publisher,
DOI: https://doi.org/10.1007/978-94-017-0399-4
[3] Y. Dybskiy and K. Slutsky, Riemann Rearrangement Theorem for Some Types of Convergence, Preprint, arXiv:math/0612840.
[4] R. Filipów and P. Szuca, Rearrangement of conditionally convergent series on a small set, Journal of Mathematical Analysis and Applications 362(1) (2010), 64-71.
DOI: https://doi.org/10.1016/j.jmaa.2009.07.029
[5] G. G. Lorentz and K. I. Zeller, Series rearrangements and analytic sets, Acta Mathematica 100(3-4) (1958), 149-169.
DOI: https://doi.org/10.1007/BF02559537
[6] A. Losonczi, Points accessible in average by rearrangement of sequences I, Transnational Journal of Mathematical Analysis and Applications 7(1) (2019), 1-27.
[7] P. A. B. Pleasants, Rearrangements that preserve convergence, Journal of the London Mathematical Society 15(1) (1977), 134-142.
DOI: https://doi.org/10.1112/jlms/s2-15.1.134
[8] M. A. Sarigöl, Rearrangements of bounded variation sequences, Proceedings of the