Journal Menu
Volume 11, Issue 1 (2023), Pages [1] - [60]
AN OPTIMAL IMPLICIT BLOCK METHOD FOR SOLUTIONS OF THE TUMOR-IMMUNE INTERACTION MODEL OF ODEs
[1] M. Abdullahi and H. Musa, Enhanced 3-point fully implicit super class of block backward differentiation formula for solving stiff initial value problems, Fudma Journal of Sciences 5(2) (2021), 120-127.
DOI:https://doi.org/10.33003/fjs-2021-0501-603
[2] M. Abdullahi, B. Sule and M. Isyaku, Derivation of 2-point zero stablenumerical algorithm of block backward differentiation formula for solving first order ordinary differential equations, Fudma Journal of Sciences 5(2) (2021), 579-584.
DOI: https://doi.org/10.33003/fjs-2021-0502-673
[3] M. Abdullahi, S. Suleiman, A. M. Sagir and B. Sule, An A-stable block integrator scheme for the solution of first order system of IVP of ordinary differential equation, Asian Journal of Probability and Statistics 16(4) (2022), 11-28.
DOI: https://doi.org/10.9734/ajpas/2022/v16i430407
[4] M. Abdullahi, G. I. Danbaba and Bashir Sule, A new block of higher order hybrid super class BDF for simulating stiff IVP of ODEs, Journal of Research in Applied Mathematics 8(12) (2022), 50-60.
[5] N. Abd Rasid, Z. B. Ibrahim, Z. A. Majid and F. Ismail, Formulation of a new implicit method for group implicit BBDF in solving related stiff ordinary differential equations, Mathematics and Statistics 9(2) (2021), 144-150.
DOI: https://doi.org/10.13189/ms.2021.090208
[6] J. A. Adam and N. Bellomo, A Survey of Models for Tumor-immune System Dynamics, Springer, New York, 1997.
DOI: https://doi.org/10.1007/978-0-8176-8119-7
[7] S. J. Aksah, Z. B. Ibrahim and I. S. M. Zawawi, Stability analysis of singly diagonally implicit block backward differentiation formulas for stiff ordinary differential equations, Mathematics 7(2) (2019); Article 211.
DOI: https://doi.org/10.3390/math7020211
[8] N. Bellomo and L. Preziosi, Modelling and mathematical problems related to tumor evolution and its interaction with the immune system, Mathematics and Computer Modeling 32(3-4) (2000), 413-452.
DOI: https://doi.org/10.1016/S0895-7177(00)00143-6
[9] J. R. Cash, On the integration of stiff systems of ODEs using extended backward differentiation formulae, Numerische Mathematik 34(3) (1980), 235-246.
DOI: https://doi.org/10.1007/BF01396701
[10] J. R. Cash, Modified extended backward differentiation formulae for the numerical solution of stiff initial value problems in ODEs and DAEs, Journal of Computational and Applied Mathematics 125(1-2) (2000), 117-130.
DOI: https://doi.org/10.1016/S0377-0427(00)00463-5
[11] C. Curtiss and J. O. Hirschfelder, Integration of stiff equations, Proceedings of the National Academy of Sciences of the United States of America 38(3) (1952), 235-243.
[12] Z. B. Ibrahim, K. I. Othman and M. B. Suleiman, Implicit r-point block backward differentiation formula for solving first-order stiff ODEs, Applied Mathematics and Computation 186(1) (2007), 558-565.
DOI: https://doi.org/10.1016/j.amc.2006.07.116
[13] Z. B. Ibrahim,
DOI: http://doi.org/10.17576/jsm-2019-4808-23
[14] Z. B. Ibrahim and I. S. M. Zawawi, A-stable fourth order block backward differentiation formulas (a) for solving stiff initial value problems, ASM Science Journal 12(6) (2019), 60-66.
[15] D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction, Journal of Mathematical Biology 37(3) (1998), 235-252.
DOI: https://doi.org/10.1007/s002850050127
[16] Z. A. Majid, N. M. Nasir, F. Ismail and N. Bachok, Two point diagonally block method for solving boundary value problems with Robin boundary conditions, Malaysian Journal of Mathematical Sciences 13(S) (2019), 1-14.
[17] K. Muangchoo, An efficient hybrid derivative-free projection algorithm for constraint nonlinear equations, Malaysian Journal of Science 40(3) (2021), 64-75.
DOI: https://doi.org/10.22452/mjs.vol40no3.6
[18] H. Musa, B. Bature and L. K. Ibrahim, Diagonally implicit super class of block backward differentiation formula for solving stiff IVPs, Journal of the Nigerian Association of Mathematical Physics 36 (2016), 73-80.
[19] H. Musa, M. B. Suleiman, F. Ismail, N. Senu and Z. B. Ibrahim, An accurate block solver for stiff initial value problems, ISRN Applied Mathematics (2013); Article ID 567451.
DOI: https://doi.org/10.1155/2013/567451
[20] H. Musa, M. B. Suleiman, F. Ismail,
[21] A. A. Nasarudin, Z. B. Ibrahim and H. Rosali, On the integration of stiff ODEs using block backward differentiation formulas of order six, Symmetry 12 (2020); Article 952, 1-13.
DOI: https://doi.org/10.3390/sym12060952
[22] N. A. A. M. Nasir, Z. B. Ibrahim, M. Suleiman, K. I. Othman and Y. F. Rahim, Numerical solution of tumor-immune interaction using 2-point block backward differentiation method, International Journal of Modern Physics: Conference Series 9 (2012), 278-284.
DOI: https://doi.org/10.1142/S2010194512005326
[23] N. M. Nasir, Z. A. Majid, F. Ismail and N. Bachok, Direct integration of the third-order two point and multipoint Robin type boundary value problems, Mathematics and Computers in Simulation 182 (2021), 411-427.
DOI: https://doi.org/10.1016/j.matcom.2020.10.028
[24] Qamar Din and K. Jameel, Mathematical Modeling of Tumor-immune Interaction, LAP LAMBERT Academic Publishing, Mauritius, 2020.
[25] Y. F. Rahim, M. Suleiman and Z. B. Ibrahim, Numerical solution of differential algebraic equations (DAEs) by mix-multistep method, AIP Conference Proceedings 1602(1) (2014), 170-178.
DOI: https://doi.org/10.1063/1.4882484
[26] Y. F. Rahim, M. Suleiman and Z. B. Ibrahim, Solving index-1 semi explicit system of differential algebraic equations by mix-multistep method, Journal of Engineering and Applied Sciences 14(24) (2019), 9538-9543.
DOI: https://doi.org/10.36478/jeasci.2019.9538.9543
[27] M. Rani, F. A. Abdullah, I. Samreen, M. Abbas, A. Majeed, T. Abdeljawad and M. A. Alqudah, Numerical approximations based on sextic B-spline functions for solving fourth-order singular problems, International Journal of Computer Mathematics 99(10) (2022), 1-20.
DOI: https://doi.org/10.1080/00207160.2022.2037576
[28] A. M. Sagir, 2-block 3-point modified Numerov block methods for solving ordinary differential equations, International Journal of Mathematical and Computational Sciences 7(1) (2013), 88-93.
[29] A. M. Sagir, Numerical treatment of block method for the solution of ordinary differential equations, International Journal of Bioengineering and Life Science 8(2) (2014a), 16-20.
[30] A. M. Sagir, On the approximate solution of continuous coefficients for solving third order ordinary differential equations. International Journal of Mathematical and Computational Sciences 8 (2014b), 67-70.
[31] A. M. Sagir and M. Abdullahi, A robust diagonally implicit block method for solving first order stiff IVP of ODEs, Applied Mathematics and Computational Intelligence 11(1) (2022), 252-273.
[32] J. H. Eng, A. Saudi and J. Sulaiman, Performance analysis of four-point Egaor iterative method applied to Poisson image blending problem, Malaysian Journal of Science 38(1) (2019), 55-66.
DOI: https://doi.org/10.22452/mjs.sp2019no1.5
[33] M. Shafiq, M. Abbas, F. A. Abdullah, A. Majeed, T. Abdeljawad and M. A. Alqudah, Numerical solutions of time fractional Burgers’ equation involving Atangana–Baleanu derivative via cubic B-spline functions, Results in Physics 34 (2022); Article 105244.
DOI: https://doi.org/10.1016/j.rinp.2022.105244
[34] S. Sujatono, Integrated slope stability analysis (SSA) with transient groundwater finite element method for embankment analysis, Jurnal Teknologi (Science & Engineering) 83(5) (2021), 9-17.
DOI: https://doi.org/10.11113/jurnalteknologi.v83.16456
[35] M. B. Suleiman, H. Musa, F. Ismail, N. Senu and Z. B. Ibrahim, A new superclass of block backward differentiation formula for stiff ordinary differential equations, Asian European Journal of Mathematics 7(7) (2014); Article 1350034, 1-17.
DOI: https://doi.org/10.1142/S1793557113500344
[36] A. Yaacob, S. Shafie, T. Suzuki and M. A. Admon, Numerical computation of Ligand and signal associated to invadopodia formation, Jurnal Teknologi (Sciences & Engineering) 84(4) (2022), 41-47.
DOI: https://doi.org/10.11113/jurnalteknologi.v84.17901
[37] Y. A. Yahaya and A. M. Sagir, An order five implicit 3-step block method for solving ordinary differential equations, The Pacific Journal of Science and Technology 14(1) (2013), 176-181.
[38] I. S. M. Zawawi, Z. B. Ibrahim and K. I. Othman, Variable step block backward differentiation formula with independent parameter for solving stiff ordinary differential equations, Journal of Physics, Conference Series 1988 (2021), 1-17.