Journal Menu
Volume 9, Issue 1 (2021), Pages [1] - [85]
NEW RESULTS ON KANNAN TYPE CONTRACTIVE SELFMAPS OF BOUNDEDLY COMPACT METRIC SPACES
[1] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fundamenta Mathematicae 3(1) (1920), 133-181.
DOI: https://doi.org/10.4064/FM-3-1-133-181
[2] F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equation in Banach spaces, Bulletin of the American Mathematical Society 72(3) (1966), 571-575.
[3] H. Y. Chen and C. C. Yeh, A note on fixed point in compact metric spaces, Indian Journal of Pure and Applied Mathematics 11(3) (1980), 297-298.
[4] Lj. B. Ćirić, On contraction type mappings, Mathematica Balkanica 1 (1971), 52-57.
[5] Lj. B. Ćirić, On some maps with nonunique fixed points, Publications de l'Institut Mathématique (
[6] R. E. Edwards, Functional Analysis: Theory and Applications, Holt, Rinehart and Winston, 1965.
[7] B. Fisher, A fixed point theorem for compact metric spaces, Publications de l'Institut Mathématique 25 (1978), 193-194.
[8] H. Garai, T. Senapati and L. K. Dey, A study on Kannan type contractive mappings, arXiv.org [math FA] 1707.06383v1, 2017.
[9] H. Garai, L. K. Dey and T. Senapati, On Kannan-type contractive mappings, Numerical Functional Analysis and Optimization 39(13) (2018), 1466-1476.
DOI: https://doi.org/10.1080/01630563.2018.1485157
[10] J. Górnicki, Fixed point theorems for Kannan type mappings, Journal of Fixed Point Theory and Applications 19(3) (2017), 2145-2152.
DOI: https://doi.org/10.1007/s11784-017-0402-8
[11] R. Kannan, Some results on fixed points, Bulletin of the Calcutta Mathematical Society 60 (1968), 71-76.
[12] E. Karapinar, M. De La Sen and A. Fulga, A note on the Górnicki-Proinov type contraction, Journal of Function Spaces (2021); Article ID 6686644, 8 pages.
DOI: https://doi.org/10.1155/2021/6686644
[13] M. S. Khan, On fixed point theorems, Mathematica Japonicae 23 (1978), 201-204.
[14] I. A. Rus, Weakly Picard operators and application, Seminar on Fixed Point Theory Cluj-Napoca 2 (2001), 41-58.
[15] V. Subrahmanyam, Completeness and fixed-points, Monatshefte für Mathematik 80(4) (1975), 325-330.
DOI: https://doi.org/10.1007/BF01472580
[16] T. Suzuki, The weakest contractive conditions for Edelstein’s mappings to have a fixed point in complete metric spaces, Journal of Fixed Point Theory and Applications 19(4) (2017), 2361-2368.