Journal Menu
Volume 6, Issue 2 (2018), Pages [231] - [313]
COMPLEX ANALYSIS OF REAL FUNCTIONS VII: A SIMPLE EXTENSION OF THE CAUCHY-GOURSAT THEOREM
[1] J. L. deLyra, Complex analysis of real functions I: Complex-analytic structure and integrable real functions, Transnational Journal of Mathematical Analysis and Applications 6(1) (2018), 15-61.
[2] J. L. deLyra, Complex analysis of real functions II: Singular Schwartz distributions, Transnational Journal of Mathematical Analysis and Applications 6(1) (2018), 63-102.
[3] J. L. deLyra, Complex analysis of real functions III: Extended Fourier theory, Transnational Journal of Mathematical Analysis and Applications 6(1) (2018), 103-142.
[4] J. L. deLyra, Complex analysis of real functions IV: Non-integrable real functions, Transnational Journal of Mathematical Analysis and Applications 6(1) (2018), 143-180.
[5] J. L. deLyra, Complex analysis of real functions V: The Dirichlet problem on the plane, Transnational Journal of Mathematical Analysis and Applications 6(1) (2018), 181-229.
[6] J. L. deLyra, Complex analysis of real functions VI: On the convergence of Fourier series, Transnational Journal of Mathematical Analysis and Applications 6(2) (2018), 231-281.
[7] R. V. Churchill, Complex Variables and Applications, McGraw-Hill, Second Edition, 1960.
[8] J. L. deLyra, Fourier theory on the complex plane I: Conjugate pairs of Fourier series and inner analytic functions, (ArXiv:1409.2582, 2015).
[9] J. L. deLyra, Fourier theory on the complex plane II: Weak convergence, classification and factorization of singularities, (ArXiv:1409.4435, 2015).
[10] J. L. deLyra, Fourier theory on the complex plane III: Low-pass filters, singularity splitting and infinite-order filters, (ArXiv:1411.6503, 2015).
[11] J. L. deLyra, Fourier theory on the complex plane IV: Representability of real functions by their Fourier coefficients, (ArXiv:1502.01617, 2015).
[12] J. L. deLyra, Fourier theory on the complex plane V: Arbitrary-parity real functions, singular generalized functions and locally non-integrable functions, (ArXiv:1505.02300, 2015).
[13] Z. Qiu, The Riemann Mapping Problem, (ArXiv:1307.0439v12, 2017).