Journal Menu
Volume 6, Issue 2 (2018), Pages [231] - [313]
COMPLEX ANALYSIS OF REAL FUNCTIONS VI: ON THE CONVERGENCE OF FOURIER SERIES
[1] J. L. deLyra, Complex analysis of real functions I: Complex-analytic structure and integrable real functions, Transnational Journal of Mathematical Analysis and Application 6(1) (2018), 15-61.
[2] J. L. deLyra, Complex analysis of real functions III: Extended Fourier theory, Transnational Journal of Mathematical Analysis and Applications 6(1) (2018), 103-142.
[3] R. V. Churchill, Fourier Series and Boundary Value Problems, McGraw-Hill, Second Edition, 1941.
[4] R. V. Churchill, Complex Variables and Applications, McGraw-Hill, Second Edition, 1960.
[5] J. L. deLyra, Fourier theory on the complex plane I: Conjugate pairs of Fourier series and inner analytic functions, arXiv:1409-2582, 2015.
[6] J. L. deLyra, Fourier theory on the complex plane II: Weak convergence, classification and factorization of singularities, arXiv:1409-4435, 2015.
[7] J. L. deLyra, Fourier theory on the complex plane III: Low-pass filters, singularity splitting and infinite-order filters, arXiv:1411-6503, 2015.
[8] J. L. deLyra, Fourier theory on the complex plane IV: Representability of real functions by their Fourier coefficients, arXiv:1502-01617, 2015.
[9] J. L. deLyra, Fourier theory on the complex plane V: Arbitrary-parity real functions, singular generalized functions and locally non-integrable functions, arXiv:1505-02300, 2015.
[10] J. L. deLyra, Complex analysis of real functions II: Singular Schwartz distributions, Transnational Journal of Mathematical Analysis and Application 6(1) (2018), 63-102.
[11] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, Third Edition, 1976. ISBN-13:978-0070542358; ISBN-10:007054235X.
[12] H. Royden, Real Analysis, Prentice-Hall, Third Edition, 1988. ISBN-13:978-0024041517; ISBN-10:0024041513.
[13] Y. W. Sokhotskii, On Definite Integrals and Functions used in Series Expansions,