Journal Menu
Volume 6, Issue 1 (2018) , Pages [1] - [229]
COMPLEX ANALYSIS OF REAL FUNCTIONS V: THE DIRICHLET PROBLEM ON THE PLANE
[1] J. L. deLyra, Complex analysis of real functions I: Complex-analytic structure and integrable real functions, Transnational Journal of Mathematical Analysis and Applications 6(1) (2018), 15-61.
[2] J. L. deLyra, Complex analysis of real functions II: Singular Schwartz distributions, Transnational Journal of Mathematical Analysis and Applications 6(1) (2018), 63-102.
[3] J. L. deLyra, Complex analysis of real functions III: Extended Fourier theory, Transnational Journal of Mathematical Analysis and Applications 6(1) (2018), 103-142.
[4] J. L. deLyra, Complex analysis of real functions IV: Non-integrable real functions, Transnational Journal of Mathematical Analysis and Applications 6(1) (2018), 143-180.
[5] R. V. Churchill, Complex Variables and Applications, McGraw-Hill, Second Edition, 1960.
[6] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, Third Edition, 1976. ISBN-13: 978-0070542358; ISBN-10: 007054235X.
[7] H. L. Royden, Real Analysis, Prentice-Hall, Third Edition, 1988. ISBN-13:978-0024041517; ISBN-10: 0024041513.
[8] J. L. deLyra, Fourier theory on the complex plane I: Conjugate pairs of Fourier series and inner analytic functions, arXiv:1409-2582, 2015.
[9] J. L. deLyra, Fourier theory on the complex plane II: Weak convergence, classification and factorization of singularities, arXiv:1409-4435, 2015.
[10] J. L. deLyra, Fourier theory on the complex plane III: Low-pass filters, singularity splitting and infinite-order filters, arXiv:1411-6503, 2015.
[11] J. L. deLyra, Fourier theory on the complex plane IV: Representability of real functions by their Fourier coefficients, arXiv:1502-01617, 2015.
[12] J. L. deLyra, Fourier theory on the complex plane V: Arbitrary-parity real functions, singular generalized functions and locally non-integrable functions arXiv:1505-02300, 2015.
[13] Z. Qiu, The Riemann mapping problem, arXiv:1307-0439v11, 2017.