Journal Menu
Volume 6, Issue 1 (2018) , Pages [1] - [229]
COMPLEX ANALYSIS OF REAL FUNCTIONS II: SINGULAR SCHWARTZ DISTRIBUTIONS
[1] J. L. deLyra, Complex analysis of real functions I: Complex-analytic structure and integrable real functions, Transnational Journal of Mathematical Analysis and Applications 6(1) (2018), 15-61.
[2] L. Schwartz, Théorie des Distributions, Volume 1-2, Hermann, 1951.
[3] M. J. Lighthill, Introduction to Fourier Analysis and Generalized Functions,
[4] R. V. Churchill, Complex Variables and Applications, McGraw-Hill, Second Edition, 1960.
[5] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, Third Edition, 1976. ISBN-13: 978-0070542358; ISBN-10: 007054235X.
[6] H. L. Royden, Real Analysis, Prentice-Hall, Third Edition, 1988. ISBN-13:978-0024041517; ISBN-10:0024041513.
[7] J. L. deLyra, Fourier theory on the complex plane I: Conjugate pairs of Fourier series and inner analytic functions, arXiv:1409.2582, 2015.
[8] J. L. deLyra, Fourier theory on the complex plane II: Weak convergence, classification and factorization of singularities, arXiv:1409-4435, 2015.
[9] J. L. deLyra, Fourier theory on the complex plane III: Low-pass filters, singularity splitting and infinite-order filters, arXiv:1411-6503, 2015.
[10] J. L. deLyra, Fourier theory on the complex plane IV: Representability of real functions by their Fourier coefficients, arXiv:1502-01617, 2015.
[11] J. L. deLyra, Fourier theory on the complex plane V: Arbitrary-parity real functions, singular generalized functions and locally non-integrable functions, arXiv:1505-02300, 2015.
[12] R. V. Churchill, Fourier Series and Boundary Value Problems, McGraw-Hill, Second Edition, 1941.
[13] L. Schwartz, Sur l’impossibilité de la multiplications des distributions, C. R. Acad. Sci. Paris, 239 (1954), 847-848.