Journal Menu
Volume 6, Issue 1 (2018) , Pages [1] - [229]
COMPLEX ANALYSIS OF REAL FUNCTIONS I: COMPLEX-ANALYTIC STRUCTURE AND INTEGRABLE REAL FUNCTIONS
[1] R. V. Churchill, Complex Variables and Applications, McGraw-Hill, Second Edition, 1960.
[2] J. L. deLyra, Fourier theory on the complex plane I: Conjugate pairs of Fourier series and inner analytic functions, arXiv:1409.2582, 2015.
[3] J. L. deLyra, Fourier theory on the complex plane II: Weak convergence, classification and factorization of singularities, arXiv:1409.4435, 2015.
[4] J. L. deLyra, Fourier theory on the complex plane III: Low-pass filters, singularity splitting and infinite-order filters, arXiv:1411.6503, 2015.
[5] J. L. deLyra, Fourier theory on the complex plane IV: Representability of real functions by their Fourier coefficients, arXiv:1502.01617, 2015.
[6] J. L. deLyra, Fourier theory on the complex plane V: Arbitrary-parity real functions, singular generalized functions and locally non-integrable functions, arXiv:1505.02300, 2015.
[7] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, Third Edition, 1976. ISBN-13:978-0070542358, ISBN-10: 007054235X.
[8] H. L. Royden, Real Analysis, Prentice-Hall, Third Edition, 1988. ISBN-13:978-0024041517, ISBN-10:0024041513.
[9] R. V. Churchill, Fourier Series and Boundary Value Problems, McGraw-Hill, Second Edition, 1941.