Journal Menu
Volume 3, Issue 1 (2015), Pages [1] - [41]
WEIGHTED BOUNDEDNESS OF MULTILINEAR OPERATOR ASSOCIATED TO SINGULAR INTEGRAL OPERATOR SATISFYING A VARIANT OF HÖRMANDER’S CONDITION
[1] S. Bloom, A commutator theorem and weighted BMO, Trans. Amer. Math. Soc. 292 (1985), 103-122.
[2] S. Chanillo, A note on commutators, Indiana Univ. Math. J. 31 (1982), 7-16.
[3] J. Cohen and J. Gosselin, On multilinear singular integral operators on Studia Math. 72 (1982), 199-223.
[4] J. Cohen and J. Gosselin, A BMO estimate for multilinear singular integral operators, Illinois J. Math. 30 (1986), 445-465.
[5] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635.
[6] G. Di Fazio and M. A. Ragusa, Commutators and Morrey spaces, Boll. Un. Mat. Ital. 5-A (1991), 323-332.
[7] G. Di Fazio and M. A. Ragusa, Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Func. Anal. 112 (1993), 241-256.
[8] Y. Ding and S. Z. Lu, Weighted boundedness for a class rough multilinear operators, Acta Math. Sinica 17 (2001), 517-526.
[9] J. Garcia-Cuerva, Weighted spaces, Dissert. Math. 162 (1979).
[10] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math., 16, Amsterdam, 1985.
[11] D. J. Grubb and C. N. Moore, A variant of Hörmander’s condition for singular integrals, Colloq. Math. 73 (1997), 165-172.
[12] Y. X. He and Y. S. Wang, Commutators of Marcinkiewicz integrals and weighted BMO, Acta Math. Sinica (Chinese Series) 54 (2011), 513-520.
[13] B. Hu and J. Gu, Necessary and sufficient conditions for boundedness of some commutators with weighted Lipschitz spaces, J. Math. Anal. Appl. 340 (2008), 598-605.
[14] S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Math. 16 (1978), 263-270.
[15] L. Z. Liu, Interior estimates in Morrey spaces for solutions of elliptic equations and weighted boundedness for commutators of singular integral operators, Acta Math. Scientia 25(B) (2005), 89-94.
[16] Daqing Lu and L. Z. Liu, sharp estimates and weighted boundedness for commutators related to singular integral operators satisfying a variant of Hörmander’s condition, Boletim da Sociedade Paranaense de Matematica 31 (2013), 99-114.
[17] T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, in “Harmonic Analysis”, Proceedings of a Conference held in
[18] M. Paluszynski, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and
[19] J. Peetre, On convolution operators leaving invariant, Ann. Mat. Pura. Appl. 72 (1966), 295-304.
[20] J. Peetre, On the theory of J. Func. Anal. 4 (1969), 71-87.
[21] C. Pérez, Endpoint estimate for commutators of singular integral operators, J. Func. Anal. 128 (1995), 163-185.
[22] C. Pérez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc. 65 (2002), 672-692.
[23] E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals,
[24] A. Torchinsky, Real Variable Methods in Harmonic Analysis, Pure and Applied Math. 123, Academic Press,
[25] R. Trujillo-Gonzalez, Weighted norm inequalities for singular integral operators satisfying a variant of Hörmander’s condition, Comment. Math. Univ. Carolin. 44 (2003), 137-152.