Journal Menu
Volume 2, Issue 1 (2014), Pages [1] - [103]
EXISTENCE RESULTS TO A QUASILINEAR PARABOLIC SYSTEMS INVOLVING p-LAPLACIAN OPERATORS VIA TIME-DISCRETIZATION METHOD
[1] C. Aranda and T. Godoy, Existence and multiplicity of positive solutions for a singular problem associated to the p-Laplacian operator, Electron. J. Differential Equations 132 (2004), 1-15.
[2] M. Badra, K. Bal and J. Giacomoni, Existence results to a quasilinear and singular parabolic equation, Discrete and Continuous Dynamical Systems, Supplement (2011), 117-125.
[3] M. Badra, K. Bal and J. Giacomoni, Some results about a quasilinear singular parabolic equation, Differential Equations & Applications 3(4) (2011), 609-627.
[4] C. S. Chen and R. Y. Wang, estimates of solution for the evolution m-Laplacian equation with initial value in Nonlinear Analysis 48(4) (2002), 607-616.
[5] M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193-222.
[6] M. Ghergu and V. Radulescu, Multi-parameter bifurcation an asymptotics for the singular Lane-Emden-Fowler equation with a convection term, Proc. Roy. Soc. Edinburgh Sect. A 135(1) (2005), 61-83.
[7] J. Giacomoni, J. Hernandez and P. Sauvy, Quasilinear and singular systems: The cooperative case, Contemporary Mathematics 540 (2011), 79-94.
[8] J. Giacomoni, J. Hernandez and A. Moussaoui, Quasilinear and singular elliptic systems, Adv. Nonlinear Anal. 2 (2013), 1-41.
[9] J. Davila and M. Montenegro, Existence and asymptotic behavior for a singular parabolic equation, Trans. Amer. Math. Soc. 357(5) (2005), 1801-1828.
[10] H. El Ouardi and F. De Thelin, Supersolutions and stabilization of the solutions of a nonlinear parabolic system, Publications Mathematiques 33 (1989), 369-381.
[11] H. El Ouardi and A. El Hachimi, Attractors for a class of doubly nonlinear parabolic systems, E. J. Qualitative Theory of Diff. Equation 1 (2006), 1-15.
[12] H. El Ouardi, Global attractor for quasilinear parabolic systems involving weighted p-Laplacian operators, J. Pure and Appl. Math. Advances and Applications 5(2) (2011), 79-97.
[13] S. El Manouni, K. Perera and R. Shivaji, On singular quasi-monotone (p, q)-Laplacian systems, Proc. Roy. Soc. Edinburgh 142 (2012), 585-594.
[14] J. Hernandez and F. J. Mancebo, Singular Elliptic Problems, Bifurcation and Asymptotic Analysis,
[15] J. Hernandez, F. J. Mancebo and J. M. Vega, On the linearization of some singular, nonlinear elliptic problems and applications, Annales de l’institut Henri Poincaré (C) Analyse non linéaire 19(6) (2002), 777-813.
[16] D. A. Kandilakis and M. Magiropoulos, A subsolution-supersolution method for quasilinear systems, Electron. J. Differential Equations 97 (2005), 1-5.
[17] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod,
[18] M. Langlais and D. Phillips, Stabilization of solution of nonlinear and degenerate evolution equations, Nonlinear Analysis TMA 9 (1985), 321-333.
[19] O. Ladyzhznskaya, V. A. Solonnikov and N. N. Outraltseva, Linear and Quasilinear Equations of Parabolic Type, Trans. Amer. Math. Soc.,
[20] N. Merazga and A. Bouziani, On a time-discretzation method for a semilinear heat equation with purely integral conditions in a nonclassical function space, Nonlinear Analysis 66(2) (2007), 253- 276.
[21] K. Perera and E. A. B. Silva, On singular p-Laplacian problems, Diff. Int. Equations 20 (2007), 105-120.
[22] J. B. Serrin, Local behavior of solutions of quasilinear elliptic equations, Acta Math. 111 (1964), 247-302.
[23] J. Simon, Régularité de la solution d’un problème aux limites non linéaire, Annales Fac. Sc. Toulouse 3, Série 5 (1981), 247-274.
[24] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126-150.