Journal Menu
Volume 2, Issue 1 (2014), Pages [1] - [103]
ON THE FAVARD CLASSES FOR VOLTERRA EQUATIONS
[1] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued, Laplace Transforms and Cauchy Problems, Birkhäuser Ulm and Oxford and Darmstadt and Batton Rouge, 2010.
[2] W. Arendt and J. Prüss, Vector-valued Tauberian theorems and asymptotic behavior of linear Volterra equations, SIAM J. Math. Anal. 23(2) (1992), 412-448.
[3] P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation,
[4] W. Desch and J. Prüss, Counterexamples for abstract linear Volterra equation, Differ. Integral Equ. Appl. 1(5) (1993), 29-45.
[5] W. Desch and W. Schappacher, Some generation results for perturbed semigroups, in semigroups theory and applications, (Proceedings Trieste 1987) (P. Clément, S. Invernizzi, E. Mitidieri and I. I. Vrabie, eds.) Marcel Dekker, Lect. Notes in Pure and Appl. 116 (1989), 125-152.
[6] K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,
[7] R. Grimmer and J. Prüss, On linear Volterra equations in Banach spaces, Comput. Math. Appl. 11(1) (1985), 189-205.
[8] M. Jung, Duality theory for solutions to Volterra integral equations, J. M. A. A. 230 (1999), 112-134.
[9] C. Lizama and V. Poblete, On multiplicative perturbation of integral resolvent families, Journal of Mathematical Analysis and Applications 327(2) (2007), 1335-1359.
[10] C. Lizama and H. Prado, On duality and spectral properties of (a, k)-regularized resolvents, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), 505-517.
[11] J. M. A. M. Van Neerven, The Adjoint of a Semigroup of Linear Operators, Lecture Notes in Math.,
[12] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser-Verlag,
[13] E. Sinestrari, Favard classes and hyperbolic equations, Rend. Instit. Mat. Univ.